請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59484完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | Lien-Chen Wu | en |
| dc.contributor.author | 吳連禎 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:25:14Z | - |
| dc.date.available | 2022-07-20 | |
| dc.date.copyright | 2017-07-20 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-14 | |
| dc.identifier.citation | 1. Chan, S.C. and B. Gantenbein-Ritter, Intervertebral disc regeneration or repair with biomaterials and stem cell therapy--feasible or fiction? Swiss Med Wkly, 2012. 142: p. w13598.
2. Bron, J.L., et al., Repair, regenerative and supportive therapies of the annulus fibrosus: achievements and challenges. Eur Spine J, 2009. 18(3): p. 301-13. 3. Liu Yang, R.A.K., Godfrey Chang, J. Paul Santerre, Polar surface chemistry of nanofibrous polyurethane scaffold affects annulus fibrosus cell attachment and early matrix accumulation. Journal of Biomedical Materials Research Part A, 2008. 4. Mercuri, J.J., S.S. Gill, and D.T. Simionescu, Novel tissue-derived biomimetic scaffold for regenerating the human nucleus pulposus. Journal of Biomedical Materials Research Part A, 2011. 96A(2): p. 422-435. 5. Schek, R.M., A.J. Michalek, and J.C. Iatridis, Genipin-Crosslinked Fibrin Hydrogels as a Potential Adhesive to Augment Intervertebral Disc Annulus Repair. European Cells & Materials, 2011. 21: p. 373-383. 6. Jin, L., A.L. Shimmer, and X.D. Li, The challenge and advancement of annulus fibrosus tissue engineering. European Spine Journal, 2013. 22(5): p. 1090-1100. 7. Chiang, C.J., et al., The effect of a new anular repair after discectomy in intervertebral disc degeneration: an experimental study using a porcine spine model. Spine (Phila Pa 1976), 2011. 36(10): p. 761-9. 8. Ahlgren, B.D., et al., Effect of anular repair on the healing strength of the intervertebral disc: a sheep model. Spine (Phila Pa 1976), 2000. 25(17): p. 2165-70. 9. Mwale, F., et al., The efficacy of Link N as a mediator of repair in a rabbit model of intervertebral disc degeneration. Arthritis Research & Therapy, 2011. 13(4). 10. Gilbert, T.W., J.M. Freund, and S.F. Badylak, Quantification of DNA in biologic scaffold materials. J Surg Res, 2009. 152(1): p. 135-9. 11. Gilbert, T.W., T.L. Sellaro, and S.F. Badylak, Decellularization of tissues and organs. Biomaterials, 2006. 27(19): p. 3675-83. 12. Stone, K.R., et al., Replacement of human anterior cruciate ligaments with pig ligaments: a model for anti-non-gal antibody response in long-term xenotransplantation. Transplantation, 2007. 83(2): p. 211-9. 13. Xu, H., et al., Comparison of decellularization protocols for preparing a decellularized porcine annulus fibrosus scaffold. plos one, 2014. 9(1): p. e86723. 14. Wu, L.C., et al., Fabrication and properties of acellular porcine anulus fibrosus for tissue engineering in spine surgery. J Orthop Surg Res, 2014. 9: p. 118. 15. Booth, C., et al., Tissue engineering of cardiac valve prostheses I: development and histological characterization of an acellular porcine scaffold. J Heart Valve Dis, 2002. 11(4): p. 457-62. 16. Stapleton, T.W., et al., Development and characterization of an acellular porcine medial meniscus for use in tissue engineering. Tissue Eng Part A, 2008. 14(4): p. 505-18. 17. Farndale RW, B.D., Barrett AJ., Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta., 1986: p. 173-7. 18. Zhang, L., et al., Role of integrin-beta3 protein in macrophage polarization and regeneration of injured muscle. J Biol Chem, 2012. 287(9): p. 6177-86. 19. Rabelo-Goncalves, E., et al., Evaluation of five DNA extraction methods for detection of H. pylori in formalin-fixed paraffin-embedded (FFPE) liver tissue from patients with hepatocellular carcinoma. Pathol Res Pract, 2014. 210(3): p. 142-6. 20. Mitchell R. Ladd, S.J.L., Joel D. Stitzel, Anthony Atala, James J. Yoo, Co-electrospun dual scaffolding system with potential for muscle–tendon junction tissue engineering. Biomaterials, 2011. 32(6): p. 1549–1559. 21. Penn, D., et al., Is there significant variation in the material properties of four different allografts implanted for ACL reconstruction. Knee Surgery Sports Traumatology Arthroscopy, 2009. 17(3): p. 260-265. 22. Woo, S.L., et al., Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med, 1991. 19(3): p. 217-25. 23. Naso, F., et al., First quantification of alpha-Gal epitope in current glutaraldehyde-fixed heart valve bioprostheses. Xenotransplantation, 2013. 20(4): p. 252-61. 24. Naso, F., et al., First quantitative assay of alpha-Gal in soft tissues: Presence and distribution of the epitope before and after cell removal from xenogeneic heart valves. Acta Biomaterialia, 2011. 7(4): p. 1728–1734. 25. TW, G., Strategies for Tissue and Organ Decellularization. Journal of Cellular Biochemistry, 2012: p. 2217-2222. 26. Rieder, E., et al., Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg, 2004. 127(2): p. 399-405. 27. Woods, T. and P.F. Gratzer, Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials, 2005. 26(35): p. 7339-49. 28. Huang, H., et al., Effects of repetitive multiple freeze-thaw cycles on the biomechanical properties of human flexor digitorum superficialis and flexor pollicis longus tendons. Clin Biomech (Bristol, Avon), 2011. 26(4): p. 419-23. 29. Hongo, M., et al., Effect of multiple freeze-thaw cycles on intervertebral dynamic motion characteristics in the porcine lumbar spine. J Biomech, 2008. 41(4): p. 916-20. 30. Dahl, S.L., et al., Decellularized native and engineered arterial scaffolds for transplantation. Cell Transplant, 2003. 12(6): p. 659-66. 31. Suto, K., et al., Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons. Cell Tissue Bank, 2012. 13(1): p. 71-80. 32. Crapo, P.M., T.W. Gilbert, and S.F. Badylak, An overview of tissue and whole organ decellularization processes. Biomaterials, 2011. 32(12): p. 3233-43. 33. Pridgen, B.C., et al., Flexor tendon tissue engineering: acellularization of human flexor tendons with preservation of biomechanical properties and biocompatibility. Tissue Eng Part C Methods, 2011. 17(8): p. 819-28. 34. Lumpkins, S.B., N. Pierre, and P.S. McFetridge, A mechanical evaluation of three decellularization methods in the design of a xenogeneic scaffold for tissue engineering the temporomandibular joint disc. Acta Biomaterialia, 2008. 4(4): p. 808-816. 35. Nakayama, K.H., et al., Decellularized Rhesus Monkey Kidney as a Three-Dimensional Scaffold for Renal Tissue Engineering. Tissue Engineering Part A, 2010. 16(7): p. 2207-2216. 36. Kheir, E., et al., Development and characterization of an acellular porcine cartilage bone matrix for use in tissue engineering. J Biomed Mater Res A, 2011. 99(2): p. 283-94. 37. Milland, J., D. Christiansen, and M.S. Sandrin, Alpha1,3-galactosyltransferase knockout pigs are available for xenotransplantation: are glycosyltransferases still relevant? Immunol Cell Biol, 2005. 83(6): p. 687-93. 38. Puga Yung, G.L., et al., Complete absence of the alphaGal xenoantigen and isoglobotrihexosylceramide in alpha1,3galactosyltransferase knock-out pigs. Xenotransplantation, 2012. 19(3): p. 196-206. 39. Goncalves, A.C., et al., Decellularization of bovine pericardium for tissue-engineering by targeted removal of xenoantigens. J Heart Valve Dis, 2005. 14(2): p. 212-7. 40. Choi, S.Y., et al., Elimination of alpha-gal xenoreactive epitope: alpha-galactosidase treatment of porcine heart valves. J Heart Valve Dis, 2012. 21(3): p. 387-97. 41. Zheng, M.H., et al., Porcine small intestine submucosa (SIS) is not an acellular collagenous matrix and contains porcine DNA: possible implications in human implantation. J Biomed Mater Res B Appl Biomater, 2005. 73(1): p. 61-7. 42. Lam, T.T., et al., Anti-non-Gal porcine endothelial cell antibodies in acute humoral xenograft rejection of hDAF-transgenic porcine hearts in cynomolgus monkeys. Xenotransplantation, 2004. 11(6): p. 531-5. 43. Chen G, Q.H., Starzl T, Sun H, Garcia B, Wang X, Wise Y, Liu Y, Xiang Y, Copeman L, Liu W, Jevnikar A, Wall W, Cooper DK, Murase N, Dai Y, Wang W, Xiong Y, White DJ, Zhong R., Acute rejection is associated with antibodies to non-Gal antigens in baboons using Gal-knockout pig kidneys. Nat Med, 2005. 11(12): p. 1295-8. 44. Raeder, R.H., et al., Natural anti-galactose alpha1,3 galactose antibodies delay, but do not prevent the acceptance of extracellular matrix xenografts. Transpl Immunol, 2002. 10(1): p. 15-24. 45. Daly, K.A., et al., Effect of the alphaGal epitope on the response to small intestinal submucosa extracellular matrix in a nonhuman primate model. Tissue Eng Part A, 2009. 15(12): p. 3877-88. 46. Badylak, S.F. and T.W. Gilbert, Immune response to biologic scaffold materials. Semin Immunol, 2008. 20(2): p. 109-16. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59484 | - |
| dc.description.abstract | 背景:多年來,針對椎間盤受損之新治療對策包含椎間盤的修補、取代及再生,然而似乎成效不彰,這可能歸因於對受損之椎間盤纖維環的治療著墨不足。本研究則著力於開發異種纖維環組織去細胞的生醫製程,並定量去細胞纖維環組織上α-Gal表面抗原的含量,以期開發並能臨床運用於脊椎手術之產品。
方法:將豬的纖維環組織分組採取不同的凍融溫度、離子洗劑、溶製時間進行去細胞化,來決定去細胞的最佳製程。 接著使用生化和機械測試確定去細胞化材料的完整性。最後定量並比較α-Gal表面抗原在去細胞化前後之差異。 結果與討論:第1部分:由H&E染色顯示去細胞化成功透過去細胞製程達成。纖維環組織的醣胺聚醣,膠原蛋白含量和機械特性等皆能被維持而無顯著變化,且無明顯的細胞毒性。第2部分:研究中採單變因測試決定了液態氮凍融、離子洗劑(0.1%SDS)、及溶製24小時等為豬纖維環組織去細胞化的最佳製程。綜合來看,這個去細胞最佳化製程除了保留更多的醣胺聚醣,同時也去除了與第1部分實驗相仿量的DNA。生物免疫相容性則透過在去細胞化材料能成功在動物體內重塑及α-Gal表面抗原的明顯減少來證實。 結論:豬纖維環組織能成功去細胞,並保存重要的生物組成與機械特性。這些結果表明脫細胞豬纖維環材料將可能臨床應用在脊椎外科手術上。 | zh_TW |
| dc.description.abstract | Background: Over the last few years, new treatments for a damaged intervertebral disc (IVD) have included strategies to repair, replace or regenerate the degenerative disc. However, these techniques are likely to have limited success, due to insufficiently effective means to address the damaged annulus fibrosus (AF). This study aimed to develop a bioprocess method for decellularization of the xenogeneic AF tissue and to quantify potentially antigenic α-Gal epitopes in the decellularized AF tissue, with a view to developing a scaffold as a potential candidate for clinical application in spinal surgery.
Methods: Porcine AF tissue was decellularized using different freeze-thaw temperatures, chemical detergents, and incubation times in order to determine the optimal method for cell removal. The integrity of the decellularized material was determined using biochemical and mechanical tests. The α-Gal epitope was quantified before and after decellularization. Results & Discussion: Part1: H&E staining showed that decellularization was achieved through the decellularization protocols. GAG, collagen and mechanical properties of the AF scaffold were maintained with no significant cytotoxicity. Part 2 : The study defined the optimal conditions for decellularization of porcine AF tissues with dry freeze-thaw in liquid nitrogen, an ionic detergent (0.1% SDS), and a 24-hour incubation period when tested as single variables. Combined, these optimal decellularization conditions preserved more GAG while removing the same amount of DNA as the conditions used in Part 1 study. Under these conditions, immunocompatibility was evidenced by successful in vivo remodeling and reduction of the α-Gal epitope in the decellularized material. Conclusions: Porcine AF tissue were effectively decellularized with preservation of biologic composition and mechanical properties. These results demonstrate that decellularized AF scaffolds are potential candidates for clinical applications in spinal surgery. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:25:14Z (GMT). No. of bitstreams: 1 ntu-106-D98548019-1.pdf: 2657062 bytes, checksum: ba408e231c1d8826806624c146abe05c (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………………Ⅰ
Abstract……………………………………………………………………Ⅱ 目錄…………………………………………………………………………Ⅳ 圖目錄………………………………………………………………………Ⅵ 表目錄………………………………………………………………………Ⅶ Chapter 1 Background…………………………………………………………1 Chapter 2 Research motives and purposes………………………………… 4 Chapter 3 Materials and methods……………………………………………6 3.1 Tissue harvest……………………………………………………………6 3.2 Part 1………………………………………………………………………6 3.2.1 Decellularization methods…………………………………………7 3.2.2 Histology……………………………………………………………7 3.2.3 Scanning electron microscopy (SEM) ……………………………8 3.2.4 Determination of proteoglycan, collagen, and DNA content……8 3.2.5 Cytotoxicity of decellularized AF in transwell insert model……9 3.2.6 Mechanical test…………………………………………………10 3.2.7 Statistical analysis………………………………………………11 3.3 Part 2……………………………………………………………………12 3.3.1 Comparison of decellularization methods………………………13 3.3.2 Optimal Decellularization Method………………………………15 3.3.3 Biochemical assays………………………………………………16 3.3.4 Histology…………………………………………………………17 3.3.5 Scanning electron microscopy (SEM) …………………………18 3.3.6 Compression (indentation) test…………………………………18 3.3.7 α-Gal ELISA test sample processing ……………………………18 3.3.8 Quantification of α-Gal content…………………………………19 3.3.9 Cytotoxicity of decellularized AF in a transwell insert model…19 3.3.10 In vivo immunocompatibility study……………………………20 3.3.11 Statistical analysis………………………………………………21 Chapter 4 Result…………………………………………………………22 4.1 Part 1………………………………………………………………22 4.1.1 Histological analysis ……………………………………………22 4.1.2 Scanning electron microscopy (SEM) analysis…………………24 4.1.3 Biochemical assays………………………………………………25 4.1.4 Cytotoxicity assay………………………………………………26 4.1.5 Mechanical test…………………………………………………27 4.2 Part 2…………………………………………………………………27 4.2.1 Comparison of decellularization methods by biochemical assays…27 4.2.2 Histologic analysis ………………………………………………30 4.2.3 Scanning electron microscopy (SEM) analysis………………32 4.2.4 Biomechanical test………………………………………………33 4.2.5 Cytotoxicity assay………………………………………………34 4.2.6 In vivo immuno-compatibility study……………………………35 4.2.7 Quantification of α-Gal content…………………………………38 Chapter 5 Discussion……………………………………………………39 Chapter 6 Conclusion……………………………………………………49 Chapter 7 Reference……………………………………………………50 圖目錄 Figure 1 Parallel bone-AF-bone specimens………………………………………11 Figure 2 Histology of annulus fibrosus with H&E stain………23 Figure 3 Fresh and decellularized annulus fibrosus stained with alcian blue…23 Figure 4 Fresh and decellularized annulus fibrosus stained with sirius red……24 Figure 5 SEM images of annulus fibrosus…………………………………………24 Figure 6 Cytotoxicity studies of the control and decellularized AF………………26 Figure 7 Histology of annulus fibrosus with H&E stain…………………………30 Figure 8 Fresh and ODM AF stained with MT staining ………………31 Figure 9 Fresh and ODM AF stained with PAS staining ……………31 Figure 10 SEM images of annulus fibrosus………………………………………32 Figure 11 Biomechanical testing of ODM AF……………………………………33 Figure 12 Cytotoxicity studies of the control and ODM AF 34 Figure 13 In vivo immuno-compatibility studies at 7 days…36 Figure 14 In vivo immuno-compatibility studies at 14 days ……………………37 Figure 15 Quantification of α-Gal content ………………………………………38 表目錄 Table 1 GAGs, hydroxyproline, DNA contents of the fresh and decellularized annulus fibrosus……………………………………25 Table 2 Biomechanical properties of fresh and decellularized annulus fibrosus…………………………………………………………………27 Table 3 Results of Biochemical Assays of AF in Decellularization ……29 | |
| dc.language.iso | en | |
| dc.subject | 去細胞 | zh_TW |
| dc.subject | 組織工程 | zh_TW |
| dc.subject | 纖維環 | zh_TW |
| dc.subject | α-Gal表面抗原 | zh_TW |
| dc.subject | 椎間盤 | zh_TW |
| dc.subject | 脊椎 | zh_TW |
| dc.subject | tissue engineering | en |
| dc.subject | annulus fibrosus | en |
| dc.subject | intervertebral disc | en |
| dc.subject | decellularization | en |
| dc.subject | spine | en |
| dc.subject | α-Gal epitope | en |
| dc.title | 豬椎間盤纖維環的去細胞製備與組織性質於脊椎外科手術之應用 | zh_TW |
| dc.title | Fabrication and Properties of Decellularized Porcine Annulus Fibrosus for Tissue Engineering in Spine Surgery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 曾永輝,孫瑞昇 | |
| dc.contributor.oralexamcommittee | 林?輝,陳志華 | |
| dc.subject.keyword | α-Gal表面抗原,纖維環,椎間盤,去細胞,脊椎,組織工程, | zh_TW |
| dc.subject.keyword | α-Gal epitope,annulus fibrosus,intervertebral disc,decellularization,spine,tissue engineering, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU201700952 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-06-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
