Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59477
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余榮熾
dc.contributor.authorYi-Jui Tsaien
dc.contributor.author蔡易叡zh_TW
dc.date.accessioned2021-06-16T09:25:00Z-
dc.date.available2019-07-12
dc.date.copyright2017-07-12
dc.date.issued2017
dc.date.submitted2017-06-15
dc.identifier.citation1. Landsteiner K, Levine P. Further observations on individual differences of human blood. Proc Soc Exp Biol Med, 1927. 24: p.941-2.
2. MatsonGA, Swanson J, Noades J. A 'new' antigen and antibody belonging to the P blood group system. Am J Hum Genet. 1959, 11: 26–34.
3. Sanger R. An association between the P and Jay systems of blood groups. Nature, 1955. 176: p.1163-4.
4. Kortekangas AE, Kaarsalo E, Melartin L. The red cell antigen Pk and its relationship to the P system: The evidence of three more Pk families. Vox sang. 1965, 10: 385–404.
5. Iwamura K, Furukawa K, Uchikawa M, et al. The blood group P1 synthase gene is identical to the Gb3/CD77 synthase gene. J Biol Chem, 2003. 278: p.44429-38.
6. Lai Y.J., et al. A systematic study of single-nucleotide polymorphisms in the A4GALT gene suggests a molecular genetic basis for the P1/P2 blood groups. Transfusion, 2014. 54(12): p.3222-31.
7. Daniels G. Human blood groups. 3rd ed. Wiley-Blackwell, 2013. p. 162-164.
8. Iwamura K, Furukawa K, Uchikawa M, et al. The blood group P1 synthase gene is identical to the Gb3/CD77 synthase gene. J Biol Chem, 2003.278: p.44429-38.
9. Roback JD et al. AABB Technical Manual, 16th Ed. Bethesda: AABB Press, 2008
10. NCBI dbRBCP1PK Blood Group System. https://www.ncbi.nlm.nih.gov/projects/gv/mhc/xslcgi.cgi?cmd=bgmut/systems_info&system=p
11. O. Delézay, D. Hammache, J. Fantini, N. Yahi. SPC3, a V3 loop-derived synthetic peptide inhibitor of HIV-1 infection, binds to cell surface glycosphingolipids. Biochemistry. 1996 Dec 10;35(49):15663-71.
12. Roback, JD, Combs, MR, Grossman, BJ & Hillyer, CD. (2008) AABB Technical Manual, 16th edn.
13. Helmuth L. Genome research: map of the human genome 3.0. Science, 2001. 293: p.583-585.
14. T. Okuda, N. Tokuda, S. Numata, M. Ito, M. Ohta, K. Kawamura, et al. Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem, 2006 Apr 14;281(15):10230-5
15. R. Steffensen, K. Carlier, J. Wiels, S.B. Leveryi, M. Stroud, B. Cedergren, et al. Cloning and expression of the histo-blood group Pk UDP-galactose: Galβ1–4Glcβ1-Cer α1,4-galactosyltransferase. Molecular genetic basis of the p phenotype. BIOLOGICAL CHEMISTRY. June 2, pp. 16723–16729, 2000
16. B. Thuresson, J.S. Westman, M.L. Olsson. Identification of a novel A4GALT exon reveals the genetic basis of the P1/P2 histo-blood groups. Blood, 117 (2011), pp. 678–687
17. Kandasamy Krishnaraju, Barbara Hoffman and Dan A. Liebermann. The Zinc Finger Transcription Factor Egr-1 Activates Macrophage Differentiation in M1 Myeloblastic Leukemia Cells, Blood 1998 92:1957-1966;
18. Tian J, Li Z, Han Y, Jiang T, Song X, Jiang G. The progress of early growth response factor 1 and leukemia. Intractable Rare Dis Res. 2016 May;5(2):76-82.
19. Fletcher KS, Bremer EG, Schwarting GA. P blood group regulation of glycosphingolipid levels in human erythrocytes. J Biol Chem, 1979. 254: p.11196-8.
20. Reynolds PR1, Cosio MG, Hoidal JR. Cigarette smoke-induced Egr-1 upregulates proinflammatory cytokines in pulmonary epithelial cells. Am J Respir Cell Mol Biol. 2006 Sep;35(3):314-9. Epub 2006 Apr 6.
21. Zhaojun Xu, Roman Dziarski, Qiuling Wang,Kevin Swartz,Kathleen M. Sakamoto, and Dipika Gupta. Bacterial Peptidoglycan-Induced tnf-α Transcription Is Mediated Through the Transcription Factors Egr-1, Elk-1, and NF-κB. J Immunol 2001; 167:6975-6982
22. Lo LW, Cheng JJ, Chiu JJ, Wung BS, Liu YC, Wang DL. Endothelial exposure to hypoxia induces Egr-1 expression involving PKCalpha-mediated Ras/Raf-1/ERK1/2 pathway. J Cell Physiol. 2001 Sep;188(3):304-12.
23. Yan SF, Fujita T, Lu J, Okada K, Shan Zou Y, Mackman N, Pinsky DJ, Stern DM. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat Med. 2000 Dec;6(12):1355-61.
24. J L Schwachtgen, P Houston, C Campbell, V Sukhatme, and M Braddock. Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway. J Clin Invest. 1998 Jun 1; 101(11): 2540–2549.
25. DS Myung et al. Expression of Early Growth Response-1 in Colorectal Cancer and Its Relation to Tumor Cell Proliferation and Apoptosis. Oncol Rep. 2013 Nov 29 ;31 (2), 788-794.
26. Veyrac , Besnard , Caboche , Davis , Laroche. The transcription factor Zif268/Egr1, brain plasticity, and memory. Prog Mol Biol Transl Sci. 2014 ;122:89-129.
27. Levon M. Khachigian. Early Growth Response-1 in Cardiovascular Pathobiology. Circulation Research. 2006 ;98:186-191
28. Abdulkadir SA. Mechanisms of prostate tumorigenesis: roles for transcription factors Nkx3.1 and Egr1.Ann N Y Acad Sci. 2005 Nov;1059:33-40.
29. Veronique Baron, Eileen D. Adamson, Antonella Calogero, Giuseppe Ragona, and Dan Mercola. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFβ1, PTEN, p53 and fibronectin. Cancer Gene Ther. 2006 Feb; 13(2): 115–124.
30. Delphine Gitenay, Véronique T Baron. Is EGR1 a potential target for prostate cancer therapy? Future Oncol. 2009 Sep; 5(7): 993–1003.
31. Murali Gururajan,1 Alan Simmons, Trivikram Dasu, Brett T. Spear, Chris Calulot, Darrell A. Robertson, David L. Wiest, John G. Monroe, and Subbarao Bondada. Early growth response genes regulate B cell development, proliferation and immune response. J Immunol. 2008 Oct 1; 181(7): 4590–4602.
32. Gibbs JD1, Liebermann DA, Hoffman B. Egr-1 abrogates the E2F-1 block in terminal myeloid differentiation and suppresses leukemia. Oncogene, 2008 Jan 3;27(1):98-106.
33. Sripichai O, Kiefer CM, Bhanu NV, Tanno T, Noh SJ, Goh SH, Russell JE, Rognerud CL, Ou CN, Oneal PA, Meier ER, Gantt NM, Byrnes C, Lee YT, Dean A, Miller JL. Cytokine-mediated increases in fetal hemoglobin are associated with globin gene histone modification and transcription factor reprogramming. Blood, 2009 Sep 10; 114(11): 2299–2306.
34. Benjamin L. Ebert. Molecular dissection of the 5q deletion in myelodysplastic syndrome. Semin Oncol. 2011 Oct; 38(5): 621–626.
35. J E Lancet1, A F List1 and L C Moscinski. Treatment of deletion 5q acute myeloid leukemia with lenalidomide. Leukemia, 2007 21, 586–588.
36. Lo HS, Wang Z, Hu Y, Yang HH, Gere S, Buetow KH, Lee MP. Allelic variation in gene expression is common in the human genome. Genome Res, 2003 Aug;13(8):1855-62.
37. Serre D, Gurd S, Ge B, Sladek R, et al. Differential allelic expression in the human genome: a robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression. PLoS Genet, 2008. 4(2): p.e1000006.
38. Richard S Spielman, Laurel A Bastone, Joshua T Burdick, Michael Morley,Warren J Ewens, and Vivian G Cheung. Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet, 2007 Feb; 39(2): 226–231.
39. Lomberg H, Jodal U, Eden CS, Leffler H, Samuelsson B. P1 blood group and urinary tract infection. Lancet, 1981 Mar 7;1(8219):551-2.
40. Keiko Furukawa, Keiko Yokoyama, Takeyuki Sato, Joelle Wiels, Yutaka Hirayama, Michio Ohta and Koichi Furukawa. Expression of the Gb3/CD77 Synthase Gene in Megakaryoblastic Leukemia Cells. BIOLOGICAL CHEMISTRY 2002 March 29 pp. 11247–11254
41. Harrison AL, Olsson ML, Jones RB, Ramkumar S, Sakac D, Binnington B, Henry S, Lingwood CA, Branch DR. A synthetic globotriaosylceramide analogue inhibits HIV-1 infection in vitro by two mechanisms. Glycoconj J, 2010 Jul;27(5):515-24.
42. Åsa Hellberg, Joyce Poole, and Martin L. Olsson. Molecular Basis of the Globoside-deficient Pk Blood Group Phenotype. BIOLOGICAL CHEMISTRY, 2002 August 16, pp. 29455–29459
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59477-
dc.description.abstractP1PK血型系統是人類血型系統中的一種,在此系統中P1及Pk是表現在紅血球細胞上的醣類抗原,這兩種抗原的形成與A4GALT基因調控有關。A4GALT基因能轉錄轉譯成α-1,4-Galactosyltransferase(α4Gal-T),為一種半乳糖機轉移酶,是主要合成P1及Pk抗原的主要酵素。在過去研究指出P1PK血型系統中有兩種主要的表現型:P1、P2。P1表現型中含P1及P抗原(Pk抗原為P抗原的前驅物),P2表現型則只有P抗原。目前已知在P1表現型的紅血球中A4GALT的表現量高於P2表現型的紅血球,因此若能找出調控A4GALT表現量的原因,便能進一步了解形成P1/P2表現型形成的分子機制。
在先前實驗室的研究裡已經發現,A4GALT SNP的不同是形成P1/P2表現型的主要原因。SNP (single nucleotide polymorphism單核苷酸多型性)指的是由單個核苷酸的改變而引起DNA序列的改變,造成物種之間染色體基因組的多樣性。我們實驗室在先前的研究發現,SNP rs2143918 (SNP5)及SNP rs5751348 (SNP6)這兩個SNP,對於A4GALT表現量高低與P1/P2表型的形成有很重要的關聯。因此在本研究中我們用電腦軟體預測這兩個SNP位置可能結合哪些轉錄因子,預測結果有RUNX1、KLF1、EGR3、KLF6A、ETS2、CEBPD。我們接著利用K562細胞模型以及報導基因分析法(reporter assay)進行實驗,結果發現EGR3在A4GALT SNP6 P1基因型的報導基因載體有較高的轉錄活性。之後我們再擴大以EGR家族系列(EGR1、EGR2、EGR4他們與EGR3有類似的結合能力)進行實驗,發現EGR家族系列的轉錄因子都能刺激A4GALT SNP6高表現基因型(P1 allele)的報導基因載體的轉錄活性。接著經由基因表現分析發現在類似紅血球的細胞中EGR1轉錄因子的表現量遠高於EGR3轉錄因子,且在K-562細胞若以(sodium butyrate)進行誘導紅血球分化,發現EGR1轉錄因子上升的量也遠高於EGR3轉錄因子,因此我們推測EGR1轉錄因子為主要在紅血球中最有可能刺激P1-A4GALT基因型等位基因的表現量。
為進一步證實轉錄因子EGR1與A4GALT SNP6 P1基因型的關係,我們將EGR1表現於SNP6 P1/P2異型核子HT-29細胞中,並觀察HT-29細胞核中A4GALT SNP6 P1及P2基因型hnRNA的表現量。實驗結果發現EGR1轉錄因子確實會與細胞核中A4GALT帶有SNP6 P1基因型結合,增加其hnRNA的表現量,最後造成A4GALT基因SNP6 P1及P2基因型的差異性表現。
zh_TW
dc.description.abstractThe P1/P2 phenotypic polymorphism is one of the earliest blood groups discovered in humans. These blood groups have been connected to presence of different levels of expression of the A4GALT gene in P1 and P2 red cells; however, the detailed molecular genetic mechanism that leads to these two phenotypes has not been established. Following our previous identification of an association between the SNPs rs2143918 and rs5751348 in A4GALT gene and the P1/P2 phenotype, we conduct a survey of transcription factors that might connect these SNPs with the differential expression of the P1-A4GALT and P2-A4GALT alleles. An in silico analysis of potential transcription factor binding motifs within the polymorphic rs2143918 and rs5751348 genomic regions was performed, and this was followed by reporter assays examining the candidate transcription factors, gene expression profiling, electrophoretic mobility shift assays, and P1-A4GALT and P2-A4GALT allelic expression analysis.
The results revealed that the differential binding of transcription factor EGR1 to the polymorphic SNP rs5751348 genomic region leads to differential activation of P1-A4GALT and P2-A4GALT expression and this consequently results in the quantitative difference of P1 antigen expression levels in P1 and P2 red cells. The present investigation has elucidated the molecular genetic details associated with the P1/P2 blood groups and revealing the first human blood group whose formation involves the transcriptional activity of a specific transcription factor and its interaction with genetic polymorphism within the gene regulatory region.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:25:00Z (GMT). No. of bitstreams: 1
ntu-106-R04b46019-1.pdf: 2609822 bytes, checksum: 737fc56477e4c7443420700e5fad1239 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 i
摘要 ii
Abstract iv
縮寫表 vi
目錄 viii
圖目錄 xi
第一章 緒論 1
1.1 人類P1PK血型系統 1
1.2 α-1,4-Galactosyltransferase (α4Gal-T) 2
1.3 A4GALT基因的SNP與P1/P2血型之關聯 3
1.4 研究構想與目的 4
第二章 實驗材料與方法 5
2.1 細胞培養與分化 5
2.2 報導基因分析法(Reporter assay) 5
2.3 RNA表現之分析 7
2.3.1 RNA萃取 7
2.3.2 反轉錄聚合酶連鎖反應 (Reverse Transcription-Polymerase Chain Reaction,RT-PCR) 7
2.3.3 即時定量聚合酶連鎖反應 (Real-Time Polymerase Chain Reaction) 7
2.4 脂質體轉染法(Liposome Transfection) 8
2.5 蛋白質表現之分析 8
2.5.1 蛋白質萃取 8
2.5.2 SDS聚丙烯醯胺凝膠電泳(SDS-Polyacrylamide gel electrophoresis, SDS-PAGE) ……………………………………………………………………………...8
2.5.3 西方墨點法(Western blotting) 8
2.6 電泳遷移率變動分析 (Electrophoretic Mobility Shift Assay, EMSA) 9
2.6.1 核蛋白質萃取 9
2.6.2 探針(probe)製備 9
2.6.3 蛋白質與探針反應 9
2.6.4 偵測 10
2.7 細胞核hnRNA(heterogenous nuclear)萃取及放大 10
第三章 結果 11
3.1 轉錄因子與A4GALT基因上SNP5及SNP6的轉錄活性調控關係 11
3.1.1 利用電腦預測及分析可能會和A4GALT基因SNP5及SNP6基因型不同而導致結合親和性差別之轉錄因子 11
3.1.2 分析有可能有結合能力的轉錄因子對A4GALT基因SNP5及SNP6之P1及P2基因型轉錄活性的影響 12
3.2 轉錄因子EGR家族對A4GALT基因SNP5及SNP6之P1及P2基因型轉錄活性的關係 13
3.3 轉錄因子EGR家族在類紅血球細胞(erythroid lineage)中的表現 13
3.4 轉錄因子EGR1對A4GALT基因SNP6 P1基因型的影響 14
3.5 轉錄因子EGR1與A4GALT基因SNP6 P1及P2基因型之間的蛋白質與DNA的交互作用(interaction) 14
3.6 轉錄因子EGR1在A4GALT SNP6為異型核子HT-29細胞中對P1-及P2-A4GALT基因表現的影響 15
第四章 討論 17
第五章 圖表 20
參考文獻 26
附錄 31
dc.language.isozh-TW
dc.subject早期生長反應蛋白1(EGR1)zh_TW
dc.subjectP1/P2血型系統zh_TW
dc.subjectα-1zh_TW
dc.subject4-半乳糖基轉移?zh_TW
dc.subject單一核?酸多型性zh_TW
dc.subjectP1/P2 blood groupsen
dc.subjectEGR-1en
dc.subjectSNPen
dc.subjectA4GALTen
dc.title轉錄因子EGR1調控P1-及P2-A4GALT血型基因型的差異性表現zh_TW
dc.titleThe differential expression of blood group P1-and P2-A4GALT alleles is stimulated by transcription factor EGR1en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱善德,涂玉青
dc.subject.keywordP1/P2血型系統,α-1,4-半乳糖基轉移?,單一核?酸多型性,早期生長反應蛋白1(EGR1),zh_TW
dc.subject.keywordP1/P2 blood groups,A4GALT,SNP,EGR-1,en
dc.relation.page35
dc.identifier.doi10.6342/NTU201700919
dc.rights.note有償授權
dc.date.accepted2017-06-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved