請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59441完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁博煌(Po-Huang Liang) | |
| dc.contributor.author | En Ning Lui | en |
| dc.contributor.author | 雷恩寧 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:23:51Z | - |
| dc.date.available | 2020-06-21 | |
| dc.date.copyright | 2017-07-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-21 | |
| dc.identifier.citation | REFERENCE
1. Lin, Y.F., et al., Targeting the XIAP/caspase-7 complex selectively kills caspase-3-deficient malignancies. J Clin Invest, 2013. 123(9): p. 3861-75. 2. Torre, L.A., et al., Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 2015. 65(2): p. 87-108. 3. Welch, D.R., P.S. Steeg, and C.W. Rinker-Schaeffer, Molecular biology of breast cancer metastasis. Genetic regulation of human breast carcinoma metastasis. Breast Cancer Res, 2000. 2(6): p. 408-16. 4. King, M.-C., J.H. Marks, and J.B. Mandell, Breast and Ovarian Cancer Risks Due to Inherited Mutations in <em>BRCA1</em> and <em>BRCA2</em>. Science, 2003. 302(5645): p. 643-646. 5. Alluri, P. and L.A. Newman, Basal-like and triple-negative breast cancers: searching for positives among many negatives. Surg Oncol Clin N Am, 2014. 23(3): p. 567-77. 6. Onitilo, A.A., et al., Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival. Clin Med Res, 2009. 7(1-2): p. 4-13. 7. Badowska-Kozakiewicz, A.M. and M.P. Budzik, Immunohistochemical characteristics of basal-like breast cancer. Contemp Oncol (Pozn), 2016. 20(6): p. 436-443. 8. Carey, L.A., et al., Race, breast cancer subtypes, and survival in the carolina breast cancer study. JAMA, 2006. 295(21): p. 2492-2502. 9. Yersal, O. and S. Barutca, Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J Clin Oncol, 2014. 5(3): p. 412-24. 10. Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000. 406(6797): p. 747-52. 11. Fisher, D.E., Apoptosis in cancer therapy: Crossing the threshold. Cell, 1994. 78(4): p. 539-542. 12. Porter, A.G. and R.U. Jänicke, Emerging roles of caspase-3 in apoptosis. Cell death and differentiation, 1999. 6(2): p. 99-104. 13. Yang, X.-H., et al., Reconstitution of Caspase 3 Sensitizes MCF-7 Breast Cancer Cells to Doxorubicin- and Etoposide-induced Apoptosis. Cancer Research, 2001. 61(1): p. 348-354. 14. Hong, Q., et al., A polymorphism in JMJD2C alters the cleavage by caspase-3 and the prognosis of human breast cancer. Oncotarget, 2014. 5(13): p. 4779-87. 15. Javid, J., R. Mir, and A. Saxena, Involvement of CASP3 promoter polymorphism (-1337 C > G) in the development and progression of non-small cell lung cancer. Tumour Biol, 2016. 37(7): p. 9255-62. 16. Wang, M.Y., et al., Potentially functional polymorphisms in the CASP7 gene contribute to gastric adenocarcinoma susceptibility in an eastern Chinese population. PLoS One, 2013. 8(9): p. e74041. 17. McIlwain, D.R., T. Berger, and T.W. Mak, Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol, 2013. 5(4): p. a008656. 18. Lamkanfi, M. and T.D. Kanneganti, Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol, 2010. 42(1): p. 21-4. 19. Lamkanfi, M., et al., Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics, 2008. 7(12): p. 2350-63. 20. Holcik, M. and R.G. Korneluk, XIAP, the guardian angel. Nat Rev Mol Cell Biol, 2001. 2(7): p. 550-556. 21. Fulda, S. and D. Vucic, Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov, 2012. 11(2): p. 109-24. 22. Huang, Y., et al., Structural basis of caspase inhibition by XIAP: differential roles of the linker versus the BIR domain. Cell, 2001. 104(5): p. 781-90. 23. Suzuki, Y., et al., X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and -7 in distinct modes. J Biol Chem, 2001. 276(29): p. 27058-63. 24. Riedl, S.J., et al., Structural basis for the inhibition of caspase-3 by XIAP. Cell, 2001. 104(5): p. 791-800. 25. Huang, Y., et al., Requirement of both the second and third BIR domains for the relief of X-linked inhibitor of apoptosis protein (XIAP)-mediated caspase inhibition by Smac. J Biol Chem, 2003. 278(49): p. 49517-22. 26. Shiozaki, E.N., et al., Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell, 2003. 11(2): p. 519-27. 27. Srinivasula, S.M., et al., A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature, 2001. 410(6824): p. 112-6. 28. Vaux, D.L. and J. Silke, Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun, 2003. 304(3): p. 499-504. 29. Samuel, T., et al., Distinct BIR domains of cIAP1 mediate binding to and ubiquitination of tumor necrosis factor receptor-associated factor 2 and second mitochondrial activator of caspases. J Biol Chem, 2006. 281(2): p. 1080-90. 30. Mitchell, A., DIABLO is double trouble. Nat Rev Mol Cell Biol, 2000. 1(1): p. 8-8. 31. Varfolomeev, E., et al., IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell, 2007. 131(4): p. 669-81. 32. Wu, T.Y., et al., Development and characterization of nonpeptidic small molecule inhibitors of the XIAP/caspase-3 interaction. Chem Biol, 2003. 10(8): p. 759-67. 33. Oost, T.K., et al., Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem, 2004. 47(18): p. 4417-26. 34. Schimmer, A.D., et al., Targeting XIAP for the treatment of malignancy. Cell Death Differ, 2006. 13(2): p. 179-88. 35. Gao, Z., et al., A dimeric Smac/diablo peptide directly relieves caspase-3 inhibition by XIAP. Dynamic and cooperative regulation of XIAP by Smac/Diablo. J Biol Chem, 2007. 282(42): p. 30718-27. 36. Lu, J., et al., SM-164: A Novel, Bivalent Smac Mimetic That Induces Apoptosis and Tumor Regression by Concurrent Removal of the Blockade of cIAP-1/2 and XIAP. Cancer Res, 2008. 68(22): p. 9384-93. 37. Dineen, S.P., et al., Smac mimetic increases chemotherapy response and improves survival in mice with pancreatic cancer. Cancer Res, 2010. 70(7): p. 2852-61. 38. Schimmer, A.D., et al., Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell, 2004. 5(1): p. 25-35. 39. Paulsen, M., et al., Interaction with XIAP prevents full caspase-3/-7 activation in proliferating human T lymphocytes. Eur J Immunol, 2008. 38(7): p. 1979-87. 40. Norbury, C.J. and I.D. Hickson, Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol, 2001. 41: p. 367-401. 41. Elmore, S., Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology, 2007. 35(4): p. 495-516. 42. Reed, J.C., Mechanisms of Apoptosis. Am J Pathol, 2000. 157(5): p. 1415-30. 43. Saelens, X., et al., Toxic proteins released from mitochondria in cell death. Oncogene, 2004. 23(16): p. 2861-74. 44. Fulda, S. and K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 0000. 25(34): p. 4798-4811. 45. Locksley, R.M., N. Killeen, and M.J. Lenardo, The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001. 104(4): p. 487-501. 46. Ashkenazi, A. and V.M. Dixit, Death receptors: signaling and modulation. Science, 1998. 281(5381): p. 1305-8. 47. Wajant, H., The Fas signaling pathway: more than a paradigm. Science, 2002. 296(5573): p. 1635-6. 48. Hsu, H., J. Xiong, and D.V. Goeddel, The TNF receptor 1-associated protein TRADD signals cell death and NF-κB activation. Cell, 1995. 81(4): p. 495-504. 49. Elmore, S., Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol, 2007. 35(4): p. 495-516. 50. Kischkel, F.C., et al., Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J, 1995. 14(22): p. 5579-88. 51. Brumatti, G., et al., Conversion of CD95 (Fas) Type II into Type I signaling by sub-lethal doses of cycloheximide. Exp Cell Res, 2008. 314(3): p. 554-63. 52. Chang, L. and M. Karin, Mammalian MAP kinase signalling cascades. Nature, 2001. 410(6824): p. 37-40. 53. Dhillon, A.S., et al., MAP kinase signalling pathways in cancer. Oncogene, 0000. 26(22): p. 3279-3290. 54. Junttila, M.R., S.P. Li, and J. Westermarck, Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J, 2008. 22(4): p. 954-65. 55. Tournier, C., et al., Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science, 2000. 288(5467): p. 870-4. 56. Sui, X., et al., p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett, 2014. 344(2): p. 174-9. 57. Bradham, C. and D.R. McClay, p38 MAPK in development and cancer. Cell Cycle, 2006. 5(8): p. 824-8. 58. Olson, J.M. and A.R. Hallahan, p38 MAP kinase: a convergence point in cancer therapy. Trends Mol Med, 2004. 10(3): p. 125-9. 59. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74. 60. Devarajan, E., et al., Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene, 2002. 21(57): p. 8843-51. 61. Volm, M. and R. Koomagi, Prognostic relevance of c-Myc and caspase-3 for patients with non-small cell lung cancer. Oncol Rep, 2000. 7(1): p. 95-8. 62. Oudejans, J.J., et al., Absence of caspase 3 activation in neoplastic cells of nasopharyngeal carcinoma biopsies predicts rapid fatal outcome. Mod Pathol, 2005. 18(7): p. 877-85. 63. de Heer, P., et al., Caspase-3 activity predicts local recurrence in rectal cancer. Clin Cancer Res, 2007. 13(19): p. 5810-5. 64. Gronda, M., et al., Assessment of the downstream portion of the mitochondrial pathway of caspase activation in patients with acute myeloid leukemia. Apoptosis, 2005. 10(6): p. 1285-94. 65. Twiddy, D., et al., Caspase-7 is directly activated by the approximately 700-kDa apoptosome complex and is released as a stable XIAP-caspase-7 approximately 200-kDa complex. J Biol Chem, 2006. 281(7): p. 3876-88. 66. Wells, J.A. and C.L. McClendon, Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature, 2007. 450(7172): p. 1001-1009. 67. Li, H., et al., Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell, 1998. 94(4): p. 491-501. 68. Chou, T.-C., Theoretical Basis, Experimental Design, and Computerized Simulation of Synergism and Antagonism in Drug Combination Studies. Pharmacological Reviews, 2006. 58(3): p. 621-681. 69. Higueruelo, A.P., H. Jubb, and T.L. Blundell, Protein–protein interactions as druggable targets: recent technological advances. Current Opinion in Pharmacology, 2013. 13(5): p. 791-796. 70. Cai, Q., et al., A potent and orally active antagonist (SM-406/AT-406) of multiple inhibitor of apoptosis proteins (IAPs) in clinical development for cancer treatment. J Med Chem, 2011. 54(8): p. 2714-26. 71. Benetatos, C.A., et al., Birinapant (TL32711), a bivalent SMAC mimetic, targets TRAF2-associated cIAPs, abrogates TNF-induced NF-kappaB activation, and is active in patient-derived xenograft models. Mol Cancer Ther, 2014. 13(4): p. 867-79. 72. Infante, J.R., et al., Phase I dose-escalation study of LCL161, an oral inhibitor of apoptosis proteins inhibitor, in patients with advanced solid tumors. J Clin Oncol, 2014. 32(28): p. 3103-10. 73. Peterson, Q.P., et al., PAC-1 activates procaspase-3 in vitro through relief of zinc-mediated inhibition. J Mol Biol, 2009. 388(1): p. 144-58. 74. Byrd, J.C., et al., KRN5500: a novel therapeutic agent with in vitro activity against human B-cell chronic lymphocytic leukemia cells mediates cytotoxicity via the intrinsic pathway of apoptosis. Blood, 2003. 101(11): p. 4547-50. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59441 | - |
| dc.description.abstract | 先前我們發現I-Lys可藉由iodomethyl ketone來烷基化caspase-7 (CASP7)上的Cys246,從而阻止CASP7與X-linked inhibitor of apoptosis protein (XIAP) 的蛋白-蛋白交互作用(PPI)並釋放活化的CASP7,進而有選擇性地殺死具CASP7:XIAP蛋白複體累積的癌細胞,其通常為CASP3表現量低(CASP3/DR)的癌細胞 [1]. 因CASP3表現量減低使得細胞凋亡也減少,從而讓癌細胞產生抗藥性。I-Lys提供了一個有效且安全的治療方法,因正常細胞無CASP7:XIAP蛋白質複體。除不可逆I-Lys,之前我們實驗室的博士畢業生陳世勳透過電腦模擬從Sigma化合物庫找到一個可逆的抑制劑,643943。本篇論文旨在測試I-Lys及643943的類似物對於毒殺MCF-7乳癌細胞的結構-功能關係及引發癌細胞凋亡的機制。我們發現較弱的離去基會減弱I-Lys類似物的活性而保護基影響不大。643943與 Staurosporine (STS) 的結合對於殺死具有Taxol抗性的MCF-7乳癌細胞(7TR)有加成作用。我們發現643943的類似物-0909所引發的細胞凋亡機制與643943不同,乃通過MAPK來調控細胞凋亡,並且活化許多caspases,而643943 主要活化CASP7。我們的研究提供了一個對於CASP3表現量低和抗藥性癌細胞的治療方法。 | zh_TW |
| dc.description.abstract | Previously, we demonstrated that disruption of protein-protein interaction (PPI) of caspase-7 (CASP7) and X-linked inhibitor of apoptosis protein (XIAP) by using I-Lys with an iodomethyl ketone warhead to alkylate Cys246 of CASP7, selectively killed cancer cells with accumulation of CASP7:XIAP complexes, which are caspase-3 down-regulated (CASP3/DR) [1]. CASP3/DR frequently confers resistance to cancer therapy due to reduced apoptotic machinery. This represents an effective and safe strategy for chemotherapy because the CASP7:XIAP complexes are not accumulated in normal cells. Unlike the I-Lys irreversible PPI inhibitor, through compute virtual screening, a reversible PPI inhibitor, 643943, a compound from Sigma compound bank was discovered by Chen, S. H. et al. In this thesis, I aimed to determine the structure-activity relationship of the I-Lys and 643943 analogues and the induced apoptotic mechanisms. We found that in I-Lys analogues, the weaker leaving group reduced the activity, but C-terminal protecting groups did not affect so much. We also found synergistic effect of 643943 combining STS in killing 7-TR, a Taxol-resistant MCF-7 cells. The analogue 0909 adopts different mechanism to induce apoptosis in MCF-7 cells through MAPK family to activate various caspases, unlike 643943 that mainly activated CASP7. Our studies demonstrated a promising therapeutic strategy against CASP3/DR and multidrug resistant cancers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:23:51Z (GMT). No. of bitstreams: 1 ntu-106-R04b46001-1.pdf: 2905372 bytes, checksum: 2532ffe50763bc17fa0fa316ad3677f3 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | TABLE of CONTENTS
中文摘要 iv ABSTRACT v ABBREVIATIONS vi (1) INTRODUCTION 1 1.1 Breast cancer 1 1.2 Chemoresistant in breast cancer 2 1.3 Caspase-3 3 1.4 Caspase-7 3 1.5 XIAP 4 1.6 Apoptosis 6 1.6.1 Intrinsic apoptosis pathway 6 1.6.2 Extrinsic apoptosis pathway 7 1.7 MAPK signaling pathway 8 1.7.1 ERK pathway 9 1.7.2 c-JUN N-terminal kinase (JNK) pathway 9 1.7.3 p38 pathway 10 1.8 Previous studies and the present work 11 (2) MATERIALS AND METHODS 14 2.1 Chemicals 14 2.2 Cell culture and cell lines 14 2.3 Western blot 15 2.4 Determination of caspase activities 16 2.5 MTT assay 16 2.6 PI-based flow cytometry analysis 17 2.7 Generation of paclitaxel-resistant cell line 17 (3) RESULTS 19 3.1 SAR of I-Lys analogues in killing MCF-7 versus MCF-10A 19 3.2. SAR of 643943 and its analogues in killing MCF-7 versus MCF-10A 20 3.3 Activation of CASP7 by the active compounds in MCF-7 cells 23 3.4 643943 effectively killed different CASP3/DR cell lines 24 3.5 Synergistic effect of 643943 with Staurosporine (STS) in killing MCF-7/TR 25 3.6 AC77, 0909, and 643943 were selected for further studies 25 3.7 The CASP7-mediated apoptotic signaling pathway triggered by the selected compounds 26 3.8 Synergistic effect of 643943 and 0909 27 3.9 0909 upregulated pro-apoptotic proteins and inhibited the anti-apoptotic proteins. 28 3.10 0909-induced apoptosis was mediate through the activation of p38 and JNK MAPK pathways 28 (4) DISCUSSIONS 30 REFERENCE 34 TABLE 39 FIGURE 40 | |
| dc.language.iso | en | |
| dc.subject | 蛋白抑製劑 | zh_TW |
| dc.subject | 乳癌細胞 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | MCF-7 | en |
| dc.subject | protein-protein inhibitor | en |
| dc.subject | apoptosis | en |
| dc.title | 探討抑製劑的結構改變如何影響CASP7:XIAP 之間的相互作用並選擇性地殺死CASP3表現量低的癌細胞與具有抗藥性癌細胞 | zh_TW |
| dc.title | Structure-activity relationship of CASP7:XIAP inhibitors for selectively killing CASP3/DR and drug-resistant malignancies | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余榮熾(Lung-Chih Yu),張茂山(Mau-Sun Chang) | |
| dc.subject.keyword | 乳癌細胞,細胞凋亡,蛋白抑製劑, | zh_TW |
| dc.subject.keyword | MCF-7,apoptosis,protein-protein inhibitor, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201701016 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-06-21 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
