請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59431完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃義侑(Yi-You Huang) | |
| dc.contributor.author | Meng-Yow Hsieh | en |
| dc.contributor.author | 謝孟佑 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:23:32Z | - |
| dc.date.available | 2027-12-31 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-22 | |
| dc.identifier.citation | [1] Mont M.A, Hungerford D.S. Non-traumatic avascular necrosis of the femoral head. J. Bone Joint Surg. Am. 77, 459-474, (1995)
[2] Babis G.C, Sakellariou V, Parvizi J, Soucacos P. Osteonecrosis of the Femoral Head. Orthopedics 34, 39-48, (2011) [3] Bhandari M, Guyatt G.H, Swiontkowski M.F, Schemitsch E.H. Treatment of open fractures of the shaft of the tibia. J Bone Joint Surg Br. 83, 62-68, (2001) [4] Arrington E.D, Smith WJ, Chambers H.G, Bucknell A.L, Davino N.A. Complications of iliac crest bone graft harvesting. Clin Orthop Relat Res. 329, 300-309, (1996) [5] Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P. Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Joint Surg Am. 84,716-7220, (2002) [6] Samartzis D, Khanna N, Shen F.H, An HS. Update on bone morphogenetic proteins and their application in spine surgery. J Am Coll Surg. 200, 236-48, (2005) [7] Kappe T, Cakir B, Mattes T, Reichel H, Floren M. Infections after bone allograft surgery: a prospective study by a hospital bone bank using frozen femoral heads from living donors. Cell Tissue Bank. 11, 253-259, (2010) [8] Rangavittal N, Landa-Canovas A.R, Gonzalez-Calbet J.M, Vallet-Regi M. Structural study and stability of hydroxyapatite and beta-tricalcium phosphate: two important bioceramics. J Biomed Mater Res. 51, 660-668, (2000) [9] Mastrogiacomo M, Scaglione S, Martinetti R, Dolcini L, Beltrame F, Cancedda R, Quarto R. Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 27, 3230-3237, (2006) [10] N. Benard, D. Coisne, E. Donal, R. Perrault, Experimental study of laminar blood flow through an artery treated by a stent implantation: characterisation of intra-stent wall shear stress, J. Biomech. 36, 991-998, (2003) [11] D.N. Buckley, L.D. Burke, J. Chem Soc. Faraday 72, 1447-1459, (1975) [12] D.N. Buckley, L.D. Burke, J.K. Mukahy, J. Chem. Soc. Faraday 72, 1896-1902, (1976) [13] P. Somani, A.B. Mandale, S. Radhakrishnan, Acta Mater. 11, 2859-2871, (2000) [14] C.G. Granqvist, Solar Ener. Mater. Solar Cells 60, 201-262, (2000) [15] Mazur, K. Nalwa, H. S. ,Polymer-ferroelectric ceramic composites, In Ferroelectric Polymers, (Ed.), 539-610, (1995) [16] Mitchell, B.S. An Introduction to Materials Engineering and Science for Chemical and Materials Engineers, Wiley, 978-990, (2004) [17] Cottinet, P. J., Guyomar, D., Guiffard, B., Putson, C., and Lebrun, L. Modeling and Experimentation on an Electrostrictive Polymer Composite for Energy Harvesting IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, 57, 2885-3010, (2010). [18] Hilt, J.Z.; Byrne, M.E. Configurational biomimesis in drug delivery: Molecular imprinting of biologically significant molecules. Adv. Drug Deliv. Rev. 56, 1599-1620, (2004) [19] Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O’Mahony, J.; Whitcombe, M.J. Molecular imprinting science and technology: A survey of the literature for the years up to and including J. Mol. Recognit. 19, 106-180, (2006) [20] Zhang, H.; Ye, L.; Mosbach, K. Non-covalent molecular imprinting with emphasis on its application in separation and drug development. J. Mol. Recognit. 19, 248-259, (2006) [21] F. Unger, U. Westedt, P. Hanefeld, R. Wombacher, S. Zimmermann, A. Greiner, M. Ausborn, T. Kissel, Poly(ethylene carbonate): a thermoelastic and biodegradable biomaterial for drug eluting stent coatings. J. Control. Release 117, 312-321, (2007) [22] Sellergren, B. Molecularly imprinted polymers: Shaping enzyme inhibitors. Nat. Chem. 2, 7-8, (2010) [23] B. Balakrishnan, A.R. Tzafriri, P. Seifert, A. Groothuis, C. Rogers, E.R. Edelman, Strut position, blood flow, and drug deposition: implications for single and overlapping drug-eluting stents, Circulation 111, 2958-2965, (2005) [24] Ahmed Enas M, Aggor Fatma S, Awad Ahmed M, El-Aref Ahmed T. An innovative method for preparation of nanometal hydroxide superabsorbent hydrogel. Carbohydr Polym 91, 693-8, (2013) [25] Brannon-Peppas L, Harland R.S. Absorbent polymer technology. J Controlled Release 17, 297-298, (1991) [26] Li Yuhui, Huang Guoyou, Zhang Xiaohui, Li Baoqiang, Chen Yongmei, Lu Tingli, Lu Tian Jian, Xu Feng. Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23, 660-672, (2013) [27] Maolin Z, Jun L, Min Y, Hongfei H. The swelling behaviour of radiation prepared semi-interpenetrating polymer networks composed of polyNIPAAm and hydrophilic polymers. Radiat Phys Chem 58, 397-400, (2000) [28] Hacker M.C., Mikos A.G. Synthetic polymers, principles of regenerative medicine. 2nd ed., 587-622, (2011) [29] Jeong B.M, Lee D.S, Bae Y.H, Kim S.W. In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res. 50, 171-177, (2000) [30] Chen S, Singh J. Controlled delivery of testosterone from smart polymer solution based systems: In vitro evaluation. Int J Pharm. 295, 183-190, (2005) [31] Zitzmann M, Nieschlag E. Hormone substitution in male hypogonadism. Mol Cell Endocrinol. 161, 73-88, (2000) [32] Lee J, Bae Y.H, Sohn Y.S, Jeong B.M. Thermogelling aqueous solutions of alternating multiblock-copolymers of poly(L-lactic acid) and poly(ethylene) glycol. bio-macromolecules. 7, 1729-1734, (2006) [33] Yang L, Chu J.S, Fix J.A. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm 235, 1-15, (2002) [34] Shin Jinsub, Braun PaulV, Lee Wonmok. Fast response photonic crystal pH sensor based on templated photopolymerized hydrogel inverse opal. Sens Actuat B: Chem150, 183-90, (2010) [35] Burkert Sina, Schmidt Thomas, Gohs Uwe, Dorschner Helmut. Karl-Friedrich Arndt cross-linking of poly (N-vinyl pyrrolidone) films by electron beam irradiation. Radiat Phys Chem 76, 1324-1328, (2007) [36] Wichterle O. Hydrophilic gels for biological use. Nature 185,117-118, (1960) [37] Singh Anisha, Sharma Pramod Kumar, Garg Vipin Kumar, Garg Garima. Hydrogels: a review. 4, 97-105, (2010) [38] Amulya K. Saxena synthetic biodegradable hydrogel (Pleura Seal) sealant for sealing of lung tissue after thoracoscopic resection. J Thoracic Cardiovasc Surg 139, 496-497, (2010) [39] Hamidi Mehrdad, Azadi Amir, Rafiei Pedram. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60, 1638-1649, (2009) [40] Enas M. Ahmed, Hydrogel: Preparation, characterization, and applications. Journal of Advanced Research. 3, 1-17, (2013) [41] Zhang, K.; Wu, X.Y. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials 25, 5281-5291, (2004) [42] Chu, L.; Xie, R.; Ju, X. Stimuli-responsive membranes: Smart tools for controllable mass-transfer and separation processes. Chin. J. Chem. Eng. 19, 891-903, (2011) [43] Jeon, G.; Yang, S.Y.; Kim, J.K. Functional nanoporous membranes for drug delivery. J. Mater. Chem. 22, 14814-14834, (2012) [44] Flory, P.J. Priciples of Polymer Chemistry; Cornell University Press: Ithica, NY, USA, (1953) [45] Rees, D.A. Polysaccharide Shapes; Chapman and Hall: London, UK, (1977) [46] Tanaka, T. Phase Transitions of Gels. In Polyelectrolyte Gels; American Chemical Society: Cambridge, MA, USA, 1-21, (1992) [47] Francis J. K., Matthew H. W.T., Application of Chitosan-Based Polysaccharide Biomaterial in Cartilage Tissue Engineering: a Review. Biomaterials 21, 2589-2598, (2000) [48] Gutowska A., Jeong B., and Jasionowski M., Injectable Gels for Tissue Engineering. Anat Rec 263, 342-349, (2001) [49] Jeong B., Kim S.W., and Bae Y.H., Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliv Rev 54, 37-51, (2002) [50] Jeong B., Lee D., Gutowska A, and An Y. H., Thermogelling Biodegradable Copolymer Aqueous Solutions for Injectable Protein Delivery and Tissue Engineering. Biomacromolecules 3, 865-868, (2002) [51] Lanza R.P., Principle of Tissue Engineering, Academic Press, 2nd ed, CA, (2000) [52] Hirano S., Tsuchida H., Nagao N., N-acetylation in chitosan and the rate of its enzymic hydrolysis. Biomaterials 10, 574-576, (1989) [53] Dixon M., Edwin C., et al., Enzymes, 3rd ed., Academic Press, New York, (1976) [54] Kofuji K., Ito T., MurataY., and Kawashima S., The controlled release of a drug from biodegradable chitosan gel beads. Chem Phar. Bull 48, 59-587, (2000) [55] Usami Y., Okamoto Y., et al., Chitin and chitosan stimulate canine polymorphonuclear cells to release leukotriene B4 and prostaglandin E2. J Biomed Mater Res 42, 517-522, (1998) [56] Madihally S. V., Matthew H. W., Porous chitosan scaffolds for tissue engineering. Biomaterials 20, 1133-1142, (1999) [57] Lu J. X., Prudhommeaux F., et al., Effect of chitosan on rat knee cartilages. Biomaterials 20, 1937-1944, (1999) [58] Denuziere A., Ferrier D., et al., Chitosan-chondroitin sulfate and chitosan-hyaluronate polyelectrolyte complexes: biological properties. Biomaterials 19, 1275-1285, (1998) [59] Entwistle J., Hall C.L., Turley E. A., HA receptors: regulators of signaling to the cytoskeleton. J Cell Biochem 61, 569-577, (1996) [60] Chen W. Y., Abatangelo G., Functions of hyaluronan in wound repair. Wound Rep Reg 7, 79-89, (1999) [61] Solchaga L. A., Yoo J. U., et al., Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthop Res 18, 773-780, (2000) [62] Wozney, J. M, Bone morphogenetic proteins. Prog Growth Factor Res, 1, 267-280, (1989) [63] Pizette, S.; Niswander, L., BMPs are required at two steps of limb chondrogenesis: Formation of prechondrogenic condensations and their differentiation into chondrocytes. Dev Biol, 219, 237-249, (2000) [64] Zou, H.; Wieser, R.; Massague, J.; Niswander, L.,Distinct roles of type I bone morphogenetic protein receptors in the formation and differentiation of cartilage.Genes Dev, 11, 2191-2203, (1997) [65] Grimsrud, C. D.; Romano, P. R; D'Souza, M.; Puzas, J. E.; Schwarz, E. M.; Reynolds, P. R.; Roiser, R. N.; O'Keefe, R. J.,BMP signalling stimulates chondrocyte maturation and expression of indian hedgehog. J Orthop Res, 19, 18-25, (2001) [66] Yoon, B. S.; Pogue, R.; Ovchinnikov, D. A.; Yoshii, I.; Mishina, Y.; Behringer, R. R.; Lyons, K.M., BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development, 133, 4667-4678, (2006) [67] Nilsson, O.; Parker, E.A.; Hegde, A.; Chau, M.; Barnes, K.M.; Baron, J.,Gradients in bone morphogenetic protein-related gene expression across the growth plate. J Endocrinol, 193, 75-84, (2007) [68] Brochhausen, C.; Halstenberg, S.; Sanchez, N.; Zehbe, R.; Watzer, B.; Meurer, A.; Schubert, H.; Kirkpatrick, C. J.,Prostaglandin E2 as an innovative signalling molecule for the tissue engineering of cartilage. Tiss Eng, 14, 771-772, (2008) [69] Kronenberg, H. M., Developmental regulation of the growth plate. Nature, 423, 332-336, (2003) [70] Forriol, F.; Shapiro, F., Bone development - Interaction of molecular components and biophysical forces. Clin Orthop Relat Res, 432, 14-33, (2005) [71] Meier R, Kraus TM, Schaeffeler C, Torka S, Schlitter AM, Specht K, Haller B, Waldt S, Rechl H, Rummeny EJ, Woertler K. Bone marrow oedema on MR imaging indicates ARCO stage 3 disease in patients with AVN of the femoral head. Eur. Radiol. 24, 2271-2278, (2014) [72] Gil ES, Hudson SM Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 29, 1173-1222, (2004) [73] Takei Y.G, Aoki T, Sanui K, Ogata N, Okano T, Sakurai Y Temperature-responsive bioconjugates. 2. Molecular design for temperature-modulated bioseparations. Bioconjugate Chem. 4, 341-346, (1993) [74] Schild H.G Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17, 163-249, (1992) [75] Nagase K, Kobayashi J, Okano T Temperature-responsive intelligent interfaces for biomolecular separations and cell sheet engineering. J R Soc Interface 6, 293-309, (2009) [76] Haraguchi Y, Shimizu T, Yamato M, Okano T Scaffold-free tissue engineering using cell sheet technology. RSC Adv 2, 2184-2190, (2012) [77] H. Hussein, D. Harrison Investigation into the use of engineering polymers as acutators to produce ‘automatic disassembly’ of electronic products T. Bhamra, B. Hon (Eds.), Design and Manufacture for Sustainable Development, (2004) [78] Lendlein, A., and Kelch, S., Degradable, multifunctional polymeric biomaterials with shape-memory. In Functionally Graded Materials VIII, Van der Biest, O., et al., (eds.), Tech Trans Publications, Zurich, Switzerland, 219, 492-493, (2005) [79] Lendlein, A., and Langer, R. S., Self-expanding device for the gastrointestinal or urogenital area. WO 2004073690 A1, (2004) [80] Richter PW, Talma J, Gous PNJ, Roux P, Minnaar M, Levitz LM et al. Orbital implant. US Patent No. 2009/0309274A1, (2009) [81] Agrawal V, Sinha M: A review on carrier systems for bone morphogenetic protein-2. J Biomed Mater Res B Appl Biomater. , 2, 142–151, (2016) [82] Arthur A, Zannettino A, Gronthos S. The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J Cell Physiol. 218, 237-245, (2009) [83] Lin C.Y, Chang Y.H, Kao C.Y, Lu CH, Sung L.Y, Yen T.C, Lin K.J, Hu Y.C. Augmented healing of critical-size calvarial defects by baculovirus- engineered MSCs that persistently express growth factors. Biomaterials. 33, 3682-3692, (2012) [84] Park JB. The use of hydrogels in bone-tissue engineering. Med Oral Patol Oral Cir Bucal. 16, 115-118, (2011) [85] Fu S, Ni P, Wang B, Chu B, Zheng L, Luo F, Luo J, Qian Z. Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials. 33, 4801-4809, (2012) [86] Xu Y, Shen Y, Xiong Y, Li C, Sun C, Ouahab A, Tu J. Synthesis, characterization, biodegradability and biocompatibility of a temperature- sensitive PBLA-PEG-PBLA hydrogel as protein delivery system with low critical gelation concentration. Drug Dev Ind Pharm. 40, 1264-1275, (2014) [87] Zhou Q, Zhong L, Wei X, Dou W, Chou G, Wang Z. Baicalein and hydroxypropyl-gamma-cyclodextrin complex in poloxamer thermal sensitive hydrogel for vaginal administration. Int J Pharm. 454, 125-134, (2013) [88] Yan Q, Xiao LQ, Tan L, Sun W, Wu T, Chen LW, Mei Y, Shi B. Controlled release of simvastatin-loaded thermosensitive PLGA-PEG-PLGA hydrogel for bone tissue regeneration: in vitro and in vivo characteristics. J Biomed Mater Res A. 103, 3580-3589, (2015) [89] Vert M, Mauduit J, Li S. Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 15, 1209-1213, (1994) [90] Agrawal C.M, Athanasiou K.A. Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res. 38, 105-114, (1997) [91] Ajami-Henriquez D, Rodríguez M, Sabino M, Castillo RV, Müller AJ, Boschetti-de-Fierro A, Abetz C, Abetz V, Dubois P. Evaluation of cell affinity on poly(L-lactide) and poly(epsilon-caprolactone) blends and on PLLA-b-PCL diblock copolymer surfaces. J. Biomed. Mater. Res. A. 87, 405-417, (2008) [92] Yu L, Zhang H, Ding J. A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angew. Chem. Int. Ed Engl. 45, 2232-2235, (2006) [93] Yu L, Zhang Z, Zhang H, Ding J. Mixing a sol and a precipitate of block copolymers with different block ratios leads to an injectable hydrogel. Biomacromolecules. 10, 1547-1553, (2009) [94] Chen J.H, Wei J, Chang C.Y, Laiw R.F, Lee Y.D. Studies on segmented polyetherurethane for biomedical application: effects of composition and hard-segment content on biocompatibility. J. Biomed. Mater. Res. 41, 633-648, (1998) [95] Hernigou P, Beaujean F, Lambotte J.C. Decrease in themesenchymal stem-cell pool in the proximal femur in corticosteroid-induced osteonecrosis. J Bone Joint Surg (Br). 81, 349-355, (1999) [96] Yamamoto A, A Yamamoto, D B DeWald, I V Boronenkov, R A Anderson, S D Emr, and D Koshland. Novel PI (4) P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Molecular Biology of the Cell. 6, 525-539, (1995) [97] Peng K.T, Chen C.F, Chu I.M, Li Y.M, Hsu W.H, Hsu R.W, Chang P.J. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials. 31, 5227-5236, (2010) [98] Kim K.T, Cornelissen K.J.J.L.M, Nolte R.J.M, van Hest J.C.M.A. Polymersome Nanoreactor with Controllable Permeability Induced by Stimuli-Responsive Block Copolymers. Adv. Mater. 21, 2787-2791, (2009) [99] Namiki Y, Namiki T, Yoshida H, Ishii Y, Tsubota A, Koido S, Nariai K, Mitsunaga M, Yanagisawa S, Kashiwagi H, et al. A Novel Magnetic Crystal-Lipid Nanostructure for Magnetically Guided in vivo Gene Delivery. Nat. Nanotechnol. 4, 598-606, (2009) [100] He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J. Control. Release Off. J. Control. Release Soc. 127, 189-207, (2008) [101] Lee D.S, Shim M.S, Kim S.W, Lee H, Park I, Chang T. Novel Thermoreversible Gelation of Biodegradable PLGA-block-PEO-block-PLGA Triblock Copolymers in Aqueous Solution. Macromol. Rapid Commun. 22, 587-587, (2001) [102] Shim M.S, Lee H.T, Shim W.S, Park I, Lee H, Chang T, Kim S.W, Lee D.S. Poly (D,L-lactic acid-co-glycolic acid)-b-poly(ethylene glycol)-b-poly (D,L-lactic acid-co-glycolic acid) triblock copolymer and thermoreversible phase transition in water. J. Biomed. Mater. Res. 61, 188-196, (2002) [103] Kikuchi A, Okano T. Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog. Polym. Sci. 27, 1165-1193, (2002) [104] Chung J., Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J. Controlled Release. 62, 115-127, (1999) [105] Park K. Injectable hyaluronic acid hydrogel for bone augmentation. J. Control. Release Off. J. Control. Release Soc. 152, 207-232, (2011) [106] Shen W.J, Luan J.B, Cao L.P, Sun J, Yu L, Ding J.D. Biomacromolecules, 16, 105-115, (2015) [107] Luan J.B, Shen W.J, Chen C, Lei K.W, Yu L, Ding J.D. RSC Adv. 5, 97975-97981, (2015) [108] Zhang L, Shen W.J, Luan J.B, Yang D.X, Wei G, Yu L, Lu W.Y, Ding J.D. Acta Biomater. 23, 271-281, (2015) [109] Cao L.P, Li QL, Zhang C, Wu H.C, Yao L.Q, Xu M.D, Yu L, Ding J.D. ACS Biomater. Sci. Eng. 2, 393-402, (2016) [110] Lei K.W, Shen W.J, Cao L.P, Yu L, Ding J.D. Chem. Commun. 51, 6080-6083, (2015) [111] Hsu W.K, Sugiyama O, Park S.H, Conduah A, Feeley B.T, Liu N.Q, Krenek L, Virk M.S, An D.S, Chen I.S, Lieberman JR. Lentiviral-mediated BMP-2 gene transfer enhances healing of segmental femoral defects in rats. Bone. 40, 931-938, (2007) [112] Moore W.R, Graves S.E, Bain G.I. Synthetic bone graft substitutes. ANZ J. Surg. 71, 354-361, (2001) [113] N. Benard, R. Perrault, D. Coisne, Computational approach to estimating the effects of blood properties on changes in intra-stent flow, Ann. Biomed. Eng. 34, 1259-1271, (2006) [114] Luca L, Rougemont A.L, Walpoth B.H, Gurny R, Jordan O. The effects of carrier nature and pH on rhBMP-2-induced ectopic bone formation. J Control Release. 147, 38-44, (2010) [115] Tamai N, Myoui A, Hirao M, Kaito T, Ochi T, Tanaka J, Takaoka K, Yoshikawa H. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthritis Cartilage. 13, 405-417, (2005) [116] Li R.H, Bouxsein M.L, Blake C.A, D’Augusta D, Kim H, Li X.J, Wozney J.M, Seeherman H.J. rhBMP-2 injected in a calcium phosphate paste (alpha-BSM) accelerates healing in the rabbit ulnar osteotomy model. J Orthop Res. 21, 997-1004, (2003) [117] Blom E.J, Klein-Nulend J, Wolke J.G, van Waas M.A, Driessens F.C, Burger E.H. Transforming growth factor-beta1 incorporation in a calcium phosphate bone cement: material properties and release characteristics. J Biomed Mater Res. 59, 265-272, (2002) [118] Diab T, Pritchard E.M, Uhrig B.A, Boerckel J.D, Kaplan D.L, Guldberg R.E. A silk hydrogel-based delivery system of bone morphogenetic protein for the treatment of large bone defects. J Mech Behav Biomed Mater. 11, 123-131, (2012) [119] Luca L, Capelle M.A, Machaidze G, Arvinte T, Jordan O, Gurny R. Physical instability, aggregation and conformational changes of recombinant human bone morphogenetic protein-2 (rhBMP-2). Int J Pharm. 391, 48-54, (2010) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59431 | - |
| dc.description.abstract | 溫感性水膠為一種可注射的流體,使用微創手術的方式,可將水膠注入體內至所需的組織或器官進行治療。此外,溫感性水膠具有許多優點,例如藉由溫度的改變,不需要有機溶劑的參予,可將水膠由固態改變成液態,並且,形成原位凝膠狀態。於藥物傳輸和生物醫學的應用面,溫感性水膠藉由水膠型態的轉變,可做為藥物、生物活性因子的優良載體,並應用於組織工程的研究。
論文的研究主題是針對水膠進行骨組織修復進行討論。第一部分研究的主題是使用骨頭生長因子(BMP-2)與水膠進行結合,用於治療股骨頭缺血性壞死(AVN)。由大鼠的動物實驗結果得知,水膠中BMP-2(1μg/ mL)的劑量治療4週後,可有效降低股骨頭缺血性壞死引起的股骨損傷,治療8週後,股骨頭和股骨下生長板下方更多的骨小梁的生成。由上述結果可以得知,水膠混摻BMP-2生長因子的系統,對於股骨頭缺血性壞死的病症的具有不錯的修復潛力。 另一項研究是使用溫感性水膠系統混摻BMP-2生長因子,用於治療骨缺損。藉由相同濃度的BMP-2於不同濃度水膠系統釋放曲線決定出25wt%為最合適的水膠濃度。在動物實驗中,用25wt%的水膠混摻BMP-2進行骨缺損的治療,發現水膠含生長因子的系統,於12週的實驗結果發現骨缺損的部位已有顯著的骨癒合效果。若在12周治療過程中發現,將BMP-2的濃度提高會有更好的骨癒合效果外,若BMP-2的濃度達到20μg/mL時,由臨床的實驗結果得知,骨癒合效果與自體移植組相當。 | zh_TW |
| dc.description.abstract | Thermo-sensitive hydrogels are injectable fluids that can be introduced into the body in a minimally invasive manner prior to solidifying or gelling with the desired tissue or organ. Additionally, the thermos sensitive hydrogels own many advantages, such as it does not require organic solvents and can be an in-situ forming gel. Because of the simplicity of pharmaceutical and biomedical uses of the water-based sol-gel transition that can be used as drug delivery-control systems, bioactive compounds delivery, and tissue engineering. In this study we aimed the bone tissue repair.
The first part was focused on avascular necrosis (AVN) treat with thermogel blend with BMP-2.From results showed that AVN surgery plus MP treatment has successfully reduced the damage of femoral head 4 weeks after treatment. A dosage of BMP-2 (1μg/mL) in hydrogel has effectively reduced the femoral damage induced by AVN surgery plus MP treatment by preserving more epiphysis of the femoral head and more trabeculae below the growth plate of the femoral head 8 weeks after treatment. Furthermore, BMP-2 in hydrogel attenuated the femoral head damage after AVN surgery plus MP treatment at doses of 1 and 2μg/mL. These findings strongly suggest that BMP-2 in the hydrogel has a great potential for treating patients suffering from avascular necrosis or other conditions characterized by the osteonecrosis of bones. The other study was to develop a suitable biodegradable thermosensitive hydrogel system as a carrier for bone morphogenetic protein (BMP)-2 delivery in the treatment of critical-sized femoral defects. The BMP-2 release from BOX hydrogel exhibited a near-linear release profile in vitro. In animal experiments, treatment of critical-sized bony defects with 25 wt% BOX hydrogel carrying BMP-2 effectively promoted fracture healing during the 12-week trial period and higher concentrations of BMP-2 treatment correlated with better bone quality. Most importantly, clinical outcome and bone healing in the BOX-hydrogel group with 20 μg/mL BMP-2 were nearly equivalent to those in the autograft group in a 12-week treatment course. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:23:32Z (GMT). No. of bitstreams: 1 ntu-106-D00548001-1.pdf: 3121131 bytes, checksum: 08446cdd48b777c777f526dabc452a41 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES ix LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Background of the Study 2 1.1.1 Study for Avascular Necrosis 2 1.1.2 Study for Bone Defect 2 1.2 Motivation of the Study 4 1.3 Research Aim 5 Chapter 2 Review of the Literatures 7 2.1 Smart Materials 8 2.1.1 Smart Materials for Electrochromic 8 2.1.2 Smart Materials for Electrostrictive 8 2.1.3 Light-Responsive Materials 9 2.1.4 Smart Materials for Shape Memory 9 2.1.5 Thermoresponsive Materials 10 2.2 Hydrogels 11 2.3 Thermosensitive Hydrogel 14 2.4 Tissue Engineering 16 2.4.1 History of Tissue Engineering 16 2.4.2 In Situ Tissue Engineering 17 2.5 Bone Morphogenetic Proteins 19 2.6 Avascular Necrosis 21 2.7 Bone Defects 22 2.8 Thermogel Composite for Bone Tissue Regeneration 24 Chapter 3 Materials and Method 26 3.1 Materials 27 3.2 Synthesis of BOX Copolymer 28 3.3 Characteristic of BOX Copolymer 29 3.3.1 Gel Permeation Chromatography (GPC) Characterization 29 3.3.2 1H Nuclear Magnetic Resonance Measurements 29 3.3.3 Determination of Sol-Gel Phase Transition By the Test Tube Inverting Method 29 3.3.4 Determination of Sol-Gel-Sol Phase Transition By Rheometer 30 3.4 Biocompatibility Test-Agar Diffusion 31 3.5 Cytotoxicity Assay 33 3.6 Degradation of Hydrogel Copolymers 34 3.7 Release of BMP-2 From the BOX Hydrogel 35 3.8 Treatment of the AVN Animal Model with BOX Hydrogel Carrying BMP-2 36 3.8.1 Rat Model of Avascular Necrosis 36 3.8.2 Statistics Analysis 37 3.9 Treatment of Critically Sized Femoral Defects Animal Model with BOX Hydrogel Carrying BMP-2 38 3.9.1 Intracutaneous Irritation Test 38 3.9.2 Creation of Critically Sized (10 mm) Femoral Defects 38 3.9.3 Radiographic Analysis and μCT 39 3.9.4 Histological Staining 39 3.9.5 Biomechanical Testing 39 3.9.6 Western Blot Analysis 40 3.9.7 Statistical Analysis 40 Chapter 4 Results 41 4.1 Characterization of the BOX Copolymer 42 4.2 Thermosensitive Sol-Gel-Sol Transition of mPEG-PLGA and BOX Copolymers 43 4.3 In Vitro Degradation of mPEG-PLGA and BOX Hydrogels Copolymers 45 4.4 pH Changes in mPEG-PLGA and BOX Hydrogels During Hydrolytic Degradation 46 4.5 Biocompatibility Test for Agar Diffusion 47 4.6 Cytotoxicity of mPEG-PLGA and BOX Hydrogels 48 4.7 In Vitro BMP-2 Release From the BOX Hydrogel 49 4.8 Rat Model of Avascular Necrosis 50 4.9 Treatment of Critical-Sized Bone Defects with the BMP-2 Loaded BOX Hydrogel 51 4.10 Evaluation of Bone Repair By the Examination of Bone Remodeling Markers 52 4.11 Bone Healing Evaluated By Gross Appearance and μCT Analysis 53 4.12 Biomechanical Tests of Bone Healing 54 Chapter 5 Discussion 55 5.1 The Characteristic of Thermogel 56 5.2 The Growth Factor Release (BMP-2) from Thermogel 57 5.3 Treatment of the AVN with Biodegradable Thermosensitive Hydrogel 58 5.4 Repair of Bone Defects with Biodegradable Thermosensitive Hydrogel 59 Chapter 6 Conclusions and Future Work 62 6.1 Thermogel 63 6.2 Treatment of the AVN with Biodegradable Thermosensitive Hydrogel Carrying BMP-2 64 6.3 Treatment of Critically Sized Femoral Defects with Recombinant BMP-2 Delivered by Biodegradable Thermosensitive Hydrogel 65 6.4 Future Work 66 REFERENCES 67 | |
| dc.language.iso | en | |
| dc.subject | 骨缺損 | zh_TW |
| dc.subject | 溫感性水膠 | zh_TW |
| dc.subject | 原位 | zh_TW |
| dc.subject | 骨頭生長因子 | zh_TW |
| dc.subject | 股骨頭缺血性壞死 | zh_TW |
| dc.subject | avascular necrosis | en |
| dc.subject | in-situ | en |
| dc.subject | BMP-2 | en |
| dc.subject | femoral defects | en |
| dc.subject | thermogel | en |
| dc.title | 溫感水膠複合物於骨組織再生之應用 | zh_TW |
| dc.title | Application of Thermogel Composite for Bone Tissue Regeneration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳嘉明(Jia-Ming Chern),彭國狄(Kuo-Ti Peng),黃意真(Yi-Cheng Huang),許馨云(Hsin-Yun Hsu) | |
| dc.subject.keyword | 溫感性水膠,原位,骨頭生長因子,股骨頭缺血性壞死,骨缺損, | zh_TW |
| dc.subject.keyword | thermogel,in-situ,BMP-2,avascular necrosis,femoral defects, | en |
| dc.relation.page | 110 | |
| dc.identifier.doi | 10.6342/NTU201700756 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-06-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
