請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59416完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁博煌(Po-Huang Liang) | |
| dc.contributor.author | Yu-Ting Kuo | en |
| dc.contributor.author | 郭育廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:23:05Z | - |
| dc.date.available | 2022-07-12 | |
| dc.date.copyright | 2017-07-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-23 | |
| dc.identifier.citation | 1. Lin, Y.F., et al., Intracellular beta-tubulin/chaperonin containing TCP1-beta complex serves as a novel chemotherapeutic target against drug-resistant tumors. Cancer Res, 2009. 69(17): p. 6879-88.
2. Sharma, J. and R.F. Luduena, Use of N,N'-polymethylenebis(iodoacetamide) derivatives as probes for the detection of conformational differences in tubulin isotypes. J Protein Chem, 1994. 13(2): p. 165-76. 3. Criddle, A.H., M.A. Geeves, and T. Jeffries, The use of actin labelled with N-(1-pyrenyl)iodoacetamide to study the interaction of actin with myosin subfragments and troponin/tropomyosin. Biochem J, 1985. 232(2): p. 343-9. 4. Grazi, E., Polymerization of N-(1-pyrenyl) iodoacetamide-labelled actin: the fluorescence signal is not directly proportional to the incorporation of the monomer into the polymer. Biochem Biophys Res Commun, 1985. 128(3): p. 1058-63. 5. Roitelman, J. and I. Shechter, Studies on the catalytic site of rat liver HMG-CoA reductase: interaction with CoA-thioesters and inactivation by iodoacetamide. J Lipid Res, 1989. 30(1): p. 97-107. 6. Wawrzynow, A., J.H. Collins, and C. Coan, An iodoacetamide spin-label selectively labels a cysteine side chain in an occluded site on the sarcoplasmic reticulum Ca(2+)-ATPase. Biochemistry, 1993. 32(40): p. 10803-11. 7. Wu, Y., K.S. Kwon, and S.G. Rhee, Probing cellular protein targets of H2O2 with fluorescein-conjugated iodoacetamide and antibodies to fluorescein. FEBS Lett, 1998. 440(1-2): p. 111-5. 8. Jiang, J.D., et al., Double blockade of cell cycle at g(1)-s transition and m phase by 3-iodoacetamido benzoyl ethyl ester, a new type of tubulin ligand. Cancer Res, 2002. 62(21): p. 6080-8. 9. Rivenzon-Segal, D., et al., Sequential ATP-induced allosteric transitions of the cytoplasmic chaperonin containing TCP-1 revealed by EM analysis. Nat Struct Mol Biol, 2005. 12(3): p. 233-7. 10. Grantham, J., K.I. Brackley, and K.R. Willison, Substantial CCT activity is required for cell cycle progression and cytoskeletal organization in mammalian cells. Exp Cell Res, 2006. 312(12): p. 2309-24. 11. Dekker, C., et al., The interaction network of the chaperonin CCT. EMBO J, 2008. 27(13): p. 1827-39. 12. Brackley, K.I. and J. Grantham, Activities of the chaperonin containing TCP-1 (CCT): implications for cell cycle progression and cytoskeletal organisation. Cell Stress Chaperones, 2009. 14(1): p. 23-31. 13. Marco, S., J.L. Carrascosa, and J.M. Valpuesta, Reversible interaction of beta-actin along the channel of the TCP-1 cytoplasmic chaperonin. Biophys J, 1994. 67(1): p. 364-8. 14. Llorca, O., et al., 3D reconstruction of the ATP-bound form of CCT reveals the asymmetric folding conformation of a type II chaperonin. Nat Struct Biol, 1999. 6(7): p. 639-42. 15. Llorca, O., et al., Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J Struct Biol, 2001. 135(2): p. 205-18. 16. Nogales, E., Structural insights into microtubule function. Annu Rev Biochem, 2000. 69: p. 277-302. 17. Parker, A.L., M. Kavallaris, and J.A. McCarroll, Microtubules and their role in cellular stress in cancer. Front Oncol, 2014. 4: p. 153. 18. Sharp, D.J., G.C. Rogers, and J.M. Scholey, Microtubule motors in mitosis. Nature, 2000. 407(6800): p. 41-7. 19. Vyas, D.M. and J.F. Kadow, Paclitaxel: a unique tubulin interacting anticancer agent. Prog Med Chem, 1995. 32: p. 289-337. 20. Gigant, B., et al., Structural basis for the regulation of tubulin by vinblastine. Nature, 2005. 435(7041): p. 519-22. 21. Uppuluri, S., et al., Localization of the colchicine-binding site of tubulin. Proc Natl Acad Sci U S A, 1993. 90(24): p. 11598-602. 22. Acharya, B.R., B. Bhattacharyya, and G. Chakrabarti, The natural naphthoquinone plumbagin exhibits antiproliferative activity and disrupts the microtubule network through tubulin binding. Biochemistry, 2008. 47(30): p. 7838-45. 23. Lee, K.M., et al., Class III beta-tubulin, a marker of resistance to paclitaxel, is overexpressed in pancreatic ductal adenocarcinoma and intraepithelial neoplasia. Histopathology, 2007. 51(4): p. 539-46. 24. Montgomery, R.B., et al., Expression of oncogenic epidermal growth factor receptor family kinases induces paclitaxel resistance and alters beta-tubulin isotype expression. J Biol Chem, 2000. 275(23): p. 17358-63. 25. Urano, N., et al., Clinical significance of class III beta-tubulin expression and its predictive value for resistance to docetaxel-based chemotherapy in gastric cancer. Int J Oncol, 2006. 28(2): p. 375-81. 26. Hari, M., et al., Expression of class III beta-tubulin reduces microtubule assembly and confers resistance to paclitaxel. Cell Motil Cytoskeleton, 2003. 56(1): p. 45-56. 27. Yin, S., F. Cabral, and S. Veeraraghavan, Amino acid substitutions at proline 220 of beta-tubulin confer resistance to paclitaxel and colcemid. Mol Cancer Ther, 2007. 6(10): p. 2798-806. 28. Pizzo, P. and T. Pozzan, Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol, 2007. 17(10): p. 511-7. 29. Kaufman, R.J., Orchestrating the unfolded protein response in health and disease. J Clin Invest, 2002. 110(10): p. 1389-98. 30. Ron, D. and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol, 2007. 8(7): p. 519-29. 31. Malhotra, J.D. and R.J. Kaufman, The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol, 2007. 18(6): p. 716-31. 32. Ferri, K.F. and G. Kroemer, Organelle-specific initiation of cell death pathways. Nat Cell Biol, 2001. 3(11): p. E255-63. 33. Xu, C., B. Bailly-Maitre, and J.C. Reed, Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest, 2005. 115(10): p. 2656-64. 34. Kaneko, M., Y. Niinuma, and Y. Nomura, Activation signal of nuclear factor-kappa B in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull, 2003. 26(7): p. 931-5. 35. Hockenbery, D., et al., Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature, 1990. 348(6299): p. 334-6. 36. Acehan, D., et al., Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell, 2002. 9(2): p. 423-32. 37. Adams, J.M. and S. Cory, Apoptosomes: engines for caspase activation. Curr Opin Cell Biol, 2002. 14(6): p. 715-20. 38. Hay, E.D., The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn, 2005. 233(3): p. 706-20. 39. Larue, L. and A. Bellacosa, Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3' kinase/AKT pathways. Oncogene, 2005. 24(50): p. 7443-54. 40. Tsai, J.H. and J. Yang, Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev, 2013. 27(20): p. 2192-206. 41. Zeisberg, M. and E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009. 119(6): p. 1429-37. 42. Lee, J.M., et al., The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006. 172(7): p. 973-81. 43. Lin, Y.F., Y.F. Lee, and P.H. Liang, Targeting beta-tubulin:CCT-beta complexes incurs Hsp90- and VCP-related protein degradation and induces ER stress-associated apoptosis by triggering capacitative Ca2+ entry, mitochondrial perturbation and caspase overactivation. Cell Death Dis, 2012. 3: p. e434. 44. Sano, R. and J.C. Reed, ER stress-induced cell death mechanisms. Biochim Biophys Acta, 2013. 1833(12): p. 3460-70. 45. Kim, E.K. and E.J. Choi, Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta, 2010. 1802(4): p. 396-405. 46. Darling, N.J. and S.J. Cook, The role of MAPK signalling pathways in the response to endoplasmic reticulum stress. Biochim Biophys Acta, 2014. 1843(10): p. 2150-63. 47. Chen, Y.Y., et al., Ethanol extracts of fruiting bodies of Antrodia cinnamomea suppress CL1-5 human lung adenocarcinoma cells migration by inhibiting matrix metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt signaling pathways. Evid Based Complement Alternat Med, 2012. 2012: p. 378415. 48. Chen, W.S., et al., Bostrycin inhibits proliferation of human lung carcinoma A549 cells via downregulation of the PI3K/Akt pathway. J Exp Clin Cancer Res, 2011. 30: p. 17. 49. Cross, D.A., et al., Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 1995. 378(6559): p. 785-9. 50. Satelli, A. and S. Li, Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci, 2011. 68(18): p. 3033-46. 51. Shukla, S., et al., Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/beta-catenin signaling axis. Sci Rep, 2016. 6: p. 21860. 52. Li, J., B. Lee, and A.S. Lee, Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53. J Biol Chem, 2006. 281(11): p. 7260-70. 53. Scull, C.M. and I. Tabas, Mechanisms of ER stress-induced apoptosis in atherosclerosis. Arterioscler Thromb Vasc Biol, 2011. 31(12): p. 2792-7. 54. Oslowski, C.M. and F. Urano, Measuring ER stress and the unfolded protein response using mammalian tissue culture system. Methods Enzymol, 2011. 490: p. 71-92. 55. Harding, H.P., et al., Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell, 2000. 5(5): p. 897-904. 56. Han, J., et al., ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol, 2013. 15(5): p. 481-90. 57. Zong, W.X., et al., Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol, 2003. 162(1): p. 59-69. 58. Shamas-Din, A., et al., Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol, 2013. 5(4): p. a008714. 59. Woo, H.N., et al., Effects of the BH3-only protein human Noxa on mitochondrial dynamics. FEBS Lett, 2009. 583(14): p. 2349-54. 60. Su, J., et al., Bcl-2 family proteins are involved in the signal crosstalk between endoplasmic reticulum stress and mitochondrial dysfunction in tumor chemotherapy resistance. Biomed Res Int, 2014. 2014: p. 234370. 61. de Brito, O.M. and L. Scorrano, An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J, 2010. 29(16): p. 2715-23. 62. Mehlen, P. and A. Puisieux, Metastasis: a question of life or death. Nat Rev Cancer, 2006. 6(6): p. 449-58. 63. Kang, Y. and J. Massague, Epithelial-mesenchymal transitions: twist in development and metastasis. Cell, 2004. 118(3): p. 277-9. 64. Thiery, J.P. and M. Morgan, Breast cancer progression with a Twist. Nat Med, 2004. 10(8): p. 777-8. 65. Chambers, A.F. and L.M. Matrisian, Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst, 1997. 89(17): p. 1260-70. 66. Iniesta, P., et al., Biological and clinical significance of MMP-2, MMP-9, TIMP-1 and TIMP-2 in non-small cell lung cancer. Oncol Rep, 2007. 17(1): p. 217-23. 67. Chu, Y.W., et al., Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line. Am J Respir Cell Mol Biol, 1997. 17(3): p. 353-60. 68. Kodate, M., et al., Expression of matrix metalloproteinase (gelatinase) in T1 adenocarcinoma of the lung. Pathol Int, 1997. 47(7): p. 461-9. 69. Liu, W., J. Bagaitkar, and K. Watabe, Roles of AKT signal in breast cancer. Front Biosci, 2007. 12: p. 4011-9. 70. Cheng, G.Z., et al., Advances of AKT pathway in human oncogenesis and as a target for anti-cancer drug discovery. Curr Cancer Drug Targets, 2008. 8(1): p. 2-6. 71. Rychahou, P.G., et al., Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci U S A, 2008. 105(51): p. 20315-20. 72. Zhou, B.P., et al., Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol, 2004. 6(10): p. 931-40. 73. Bachelder, R.E., et al., Glycogen synthase kinase-3 is an endogenous inhibitor of Snail transcription: implications for the epithelial-mesenchymal transition. J Cell Biol, 2005. 168(1): p. 29-33. 74. Qiao, M., S. Sheng, and A.B. Pardee, Metastasis and AKT activation. Cell Cycle, 2008. 7(19): p. 2991-6. 75. Zhang, Y., et al., Wnt signaling regulation of stem-like properties in human lung adenocarcinoma cell lines. Med Oncol, 2015. 32(5): p. 157. 76. Takahashi-Yanaga, F. and M. Kahn, Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clin Cancer Res, 2010. 16(12): p. 3153-62. 77. Sienel, W., et al., Prognostic impact of matrix metalloproteinase-9 in operable non-small cell lung cancer. Int J Cancer, 2003. 103(5): p. 647-51. 78. Bienz, M., beta-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol, 2005. 15(2): p. R64-7. 79. Kim, N.G., C. Xu, and B.M. Gumbiner, Identification of targets of the Wnt pathway destruction complex in addition to beta-catenin. Proc Natl Acad Sci U S A, 2009. 106(13): p. 5165-70. 80. Stewart, D.J., Wnt signaling pathway in non-small cell lung cancer. J Natl Cancer Inst, 2014. 106(1): p. djt356. 81. Huang, C.L., et al., Wnt1 overexpression promotes tumour progression in non-small cell lung cancer. Eur J Cancer, 2008. 44(17): p. 2680-8. 82. Kausar, H., et al., Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett, 2012. 325(1): p. 54-62. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59416 | - |
| dc.description.abstract | 之前實驗室的研究發現可藉由I-Trp的iodoacetyl基團來烷基化β-tubulin 的Cys354,而破壞β-tubulin及chaperonin-containing TCP-1β (CCT-β)蛋白-蛋白交互作用而成造成細胞凋亡[1]。在本論文中,我們發現在CL1-5細胞中,I-Trp是透過打斷β-tubulin/CCT-β複合體的結合,內質網壓力相關蛋白被活化後,誘發細胞蛋白酶體的活化來消彌在內質網內累積的過量蛋白質。並且由於內質網壓力所引起的細胞凋亡通常會伴隨細胞質內鈣離子濃度的上升和蛋白激酶 (MAPKs)的活化,我們也有觀察到鈣離子的濃度變化,MAPK蛋白的活性改變和粒線體上的細胞凋亡相關蛋白的表現量改變。
另外我們也有探討I-Trp是否也有抑制高轉移性肺癌細胞CL1-5的轉移能力。實驗中使用的I-Trp的最高濃度維持在細胞還有80%的存活率,以確保在不殺及過多細胞的情況下探討I-Trp抑制細胞遷移和侵入的能力。實驗結果顯示,當細胞受到I-Trp刺激之際,會隨著藥物濃度上升抑制細胞遷移和侵入的能力。機制是透過抑制磷酸化AKT,進而抑制下游基質金屬蛋白酶MMP-2的活性和表現量來減緩CL1-5細胞轉移的能力。 總括而論,本篇研究嘗試去釐清破壞β-tubulin/CCT-β 複合體所引發細胞凋亡及抗細胞轉移能力,作為未來研究肺癌療法的新策略。 | zh_TW |
| dc.description.abstract | We have previously demonstrated that I-Trp with an iodomethyl ketone warhead to alkylate Cys354 of β-tubulin, thereby disrupting the protein-protein interaction (PPI) of -tubulin with chaperonin-containing TCP-1β (CCT-β), causes cancer cell apoptosis [1]. In this study, we found that in CL1-5 cells, I-Trp activates both ER stress related proteins and proteasome activity to eliminate the imbalance proteins loading in ER, thereby mitigating ER stress, at the onset of β-tubulin/CCT-β complexes disruption. In addition, ER stress-associated apoptotic signaling is usually accompanied with intracellular Ca2+ release and the activation of MAPKs. We also observed the elevated intracellular Ca2+ levels, activation of MAPKs and caspase over-activation.
Since CL1-5 cells are a highly metastatic lung cancer cell line, we assayed for its migration/invasion in the presence of I-Trp, where there were 80% survived cells to ensure most of the cells were not killed. The experimental results demonstrate the dose-dependent inhibition of CL1-5 cell migration and invasion. Furthermore, the mechanistic studies revealed that I-Trp inhibited phosphorylation AKT, and GSK-3β of CL1-5 cells, thereby downregulating MMP-2 expression and activation. In conclusion, this study reveals a novel therapeutic strategy potential for evoking apoptotic signaling by targeting β-tubulin/CCT-β complexes, and its anti-migration/invasion activity against human lung adenocarcinoma. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:23:05Z (GMT). No. of bitstreams: 1 ntu-106-R04b46012-1.pdf: 2249999 bytes, checksum: a90eb0a81a1d67c01581b4e70a373e43 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS i
ABSTRACT v ABBREVIATIONS vi 1. INTRODUCTION 1 1.1. Iodoacetamide-based derivatives in previous findings 1 1.2. CCT and its β subunit 2 1.3. Tubulin 3 1.4. ER-stress induces apoptosis 4 1.5. Mitochondria in apoptosis 5 1.6. Epithelial – Mesenchymal transitions 5 1.7. Previous studies and the present work 6 2. MATERIALS AND METHODS 8 2.1. Chemicals 8 2.2. Cell Culture 8 2.3. MTT assay 9 2.4. Flow cytometric analysis 9 2.5. Proteasome activity assay 10 2.6. Measurement of intracellular Ca2+ signaling 10 2.7. Caspase activity assay 11 2.8. Wound - healing assay 11 2.9. Matrigel invasion assay 12 2.10. Gelatin zymography 12 2.11. Western blotting analysis 13 3. RESULTS 14 3.1. Confirmation of the intracellular protein target of I-Trp in CL1-5 cells 14 3.2. Effects of I-Trp on cell viability in CL1-5 cells. 14 3.2. I-Trp induces ER stress in CL1–5 cells 15 3.3. I-Trp treatment led to accumulation of intracellular Ca2+ 16 3.4. I-Trp treatment increases the expression of apoptosis-associated proteins and caspases activity 17 3.5. I-Trp-induced apoptosis is mediated through the activation of MAPKs. 18 3.6. I-Trp inhibits migration of CL1-5 cells 19 3.7. I-Trp inhibits invasion of CL1 -5 cells 20 3.8. I-Trp suppresses EMT regulators of CL1 -5 cells 20 3.9. I-Trp inhibits activity and protein expression of MMP-2 in CL1-5 cells 21 3.10. I- Trp inhibits the phosphorylation of AKT/GSK-3β pathway in CL1-5 cells 22 4. DISCUSSION 24 REFERENCE 31 FIGURE 43 | |
| dc.language.iso | en | |
| dc.subject | 轉移 | zh_TW |
| dc.subject | β-tubulin/CCT-β蛋白質複合體 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | invasion | en |
| dc.subject | β-tubulin/CCT-β complex | en |
| dc.subject | migration | en |
| dc.subject | apoptosis | en |
| dc.title | 於CL1-5細胞中破壞β-tubulin/CCT-β蛋白質複合體引發細胞凋亡並藉抑制MMP-2及AKT/GSK-3β壓制其轉移和侵略 | zh_TW |
| dc.title | Disrupting β-tubulin/CCT-β complexes induces apoptosis and suppresses migration and invasion of CL1-5 cells through MMP-2 and AKT/GSK-3β inhibition | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余榮熾,張茂山 | |
| dc.subject.keyword | β-tubulin/CCT-β蛋白質複合體,細胞凋亡,轉移, | zh_TW |
| dc.subject.keyword | β-tubulin/CCT-β complex,apoptosis,migration,invasion, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201701056 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-06-23 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
