請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59394
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊宏(Chun-Hong Chen) | |
dc.contributor.author | Sao-Yu Chu | en |
dc.contributor.author | 璩劭宇 | zh_TW |
dc.date.accessioned | 2021-06-16T09:22:25Z | - |
dc.date.available | 2020-08-24 | |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-19 | |
dc.identifier.citation | Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., and Galle, R.F.J.S. (2000). The genome sequence of Drosophila melanogaster. 287, 2185-2195. Alyagor, I., Berkun, V., Keren-Shaul, H., Marmor-Kollet, N., David, E., Mayseless, O., Issman-Zecharya, N., Amit, I., and Schuldiner, O. (2018). Combining Developmental and Perturbation-Seq Uncovers Transcriptional Modules Orchestrating Neuronal Remodeling. Dev Cell 47, 38-52 e36. Awasaki, T., Huang, Y., O'Connor, M.B., and Lee, T. (2011). Glia instruct developmental neuronal remodeling through TGF-beta signaling. Nat Neurosci 14, 821-823. Awasaki, T., Saito, M., Sone, M., Suzuki, E., Sakai, R., Ito, K., and Hama, C.J.N. (2000). The Drosophila trio plays an essential role in patterning of axons by regulating their directional extension. 26, 119-131. Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. Bassett, A.R., Tibbit, C., Ponting, C.P., and Liu, J.L. (2013). Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4, 220-228. Bejarano, F., Bortolamiol-Becet, D., Dai, Q., Sun, K., Saj, A., Chou, Y.T., Raleigh, D.R., Kim, K., Ni, J.Q., Duan, H., et al. (2012). A genome-wide transgenic resource for conditional expression of Drosophila microRNAs. Development 139, 2821-2831. Boulanger, A., Clouet-Redt, C., Farge, M., Flandre, A., Guignard, T., Fernando, C., Juge, F., and Dura, J.M. (2011). ftz-f1 and Hr39 opposing roles on EcR expression during Drosophila mushroom body neuron remodeling. Nat Neurosci 14, 37-44. Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415. Camporeale, G., Giordano, E., Rendina, R., Zempleni, J., and Eissenberg, J.C. (2006). Drosophila melanogaster holocarboxylase synthetase is a chromosomal protein required for normal histone biotinylation, gene transcription patterns, lifespan, and heat tolerance. J Nutr 136, 2735-2742. Chaudhuri, K., Chatterjee, R.J.D., and biology, c. (2007). MicroRNA detection and target prediction: integration of computational and experimental approaches. 26, 321-337. Dietzl, G., Chen, D., Schnorrer, F., Su, K.C., Barinova, Y., Fellner, M., Gasser, B., Kinsey, K., Oppel, S., Scheiblauer, S., et al. (2007). A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151-156. Fahrbach, S.E. (2006). Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51, 209-232. Hattori, D., Chen, Y., Matthews, B.J., Salwinski, L., Sabatti, C., Grueber, W.B., and Zipursky, S.L.J.N. (2009). Robust discrimination between self and non-self neurites requires thousands of Dscam1 isoforms. 461, 644-648. Heisenberg, M. (2003). Mushroom body memoir: from maps to models. Nat Rev Neurosci 4, 266-275. Jean, F., and Pilgrim, D.J.E.j.o.c.b. (2017). Coordinating the uncoordinated: UNC119 trafficking in cilia. 96, 643-652. Kandel, E., and Abel, T.J.S.-N.Y.T.W.-. (1995). Neuropeptides, adenylyl cyclase, and memory storage. 825-825. Kheradpour, P., Stark, A., Roy, S., and Kellis, M. (2007). Reliable prediction of regulator targets using 12 Drosophila genomes. Genome Res 17, 1919-1931. Kondo, S., and Ueda, R. (2013). Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics 195, 715-721. Kuang, B., Wu, S., Shin, Y., Luo, L., and Kolodziej, P.J.D. (2000). split ends encodes large nuclear proteins that regulate neuronal cell fate and axon extension in the Drosophila embryo. 127, 1517-1529. Lai, Y.-W., Chu, S.-Y., Li, J.-C., Chen, P.-L., Chen, C.-H., and Yu, H.-H.J.S.r. (2020). Visualization of Endogenous Type I TGF-β Receptor Baboon in the Drosophila Brain. 10, 1-7. Lai, Y.W., Chu, S.Y., Wei, J.Y., Cheng, C.Y., Li, J.C., Chen, P.L., Chen, C.H., and Yu, H.H. (2016). Drosophila microRNA-34 Impairs Axon Pruning of Mushroom Body gamma Neurons by Downregulating the Expression of Ecdysone Receptor. Sci Rep 6, 39141. Lee, T., Lee, A., and Luo, L. (1999). Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126, 4065-4076. Lee, T., Marticke, S., Sung, C., Robinow, S., and Luo, L. (2000). Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila. Neuron 28, 807-818. Li, W., Cressy, M., Qin, H., Fulga, T., Van Vactor, D., and Dubnau, J.J.J.o.N. (2013). MicroRNA-276a functions in ellipsoid body and mushroom body neurons for naive and conditioned olfactory avoidance in Drosophila. 33, 5821-5833. Liu, L.-Y., Long, X., Yang, C.-P., Miyares, R.L., Sugino, K., Singer, R.H., and Lee, T.J.E. (2019). Mamo decodes hierarchical temporal gradients into terminal neuronal fate. 8, e48056. Liu, N., Landreh, M., Cao, K., Abe, M., Hendriks, G.-J., Kennerdell, J.R., Zhu, Y., Wang, L.-S., and Bonini, N.M.J.N. (2012). The microRNA miR-34 modulates ageing and neurodegeneration in Drosophila. 482, 519-523. Makeyev, E.V., and Maniatis, T.J.S. (2008). Multilevel regulation of gene expression by microRNAs. 319, 1789-1790. Marchetti, G., and Tavosanis, G.J.P.g. (2019). Modulators of hormonal response regulate temporal fate specification in the Drosophila brain. 15, e1008491. Montell, D.J., and Goodman, C.S. (1989). Drosophila laminin: sequence of B2 subunit and expression of all three subunits during embryogenesis. J Cell Biol 109, 2441-2453. Neukomm, L.J., and Freeman, M.R. (2014). Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol 24, 515-523. Perkins, L.A., Holderbaum, L., Tao, R., Hu, Y., Sopko, R., McCall, K., Yang-Zhou, D., Flockhart, I., Binari, R., Shim, H.S., et al. (2015). The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics 201, 843-852. Ruby, J.G., Stark, A., Johnston, W.K., Kellis, M., Bartel, D.P., and Lai, E.C. (2007). Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res 17, 1850-1864. Tanaka, N.K., Awasaki, T., Shimada, T., and Ito, K.J.C.b. (2004). Integration of chemosensory pathways in the Drosophila second-order olfactory centers. 14, 449-457. Wang, J., Zugates, C.T., Liang, I.H., Lee, C.H., and Lee, T. (2002). Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron 33, 559-571. Wu, Y.C., Chen, C.H., Mercer, A., and Sokol, N.S. (2012). Let-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo. Dev Cell 23, 202-209. Zhan, X.L., Clemens, J.C., Neves, G., Hattori, D., Flanagan, J.J., Hummel, T., Vasconcelos, M.L., Chess, A., and Zipursky, S.L. (2004). Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 43, 673-686. Zheng, X., Wang, J., Haerry, T.E., Wu, A.Y., Martin, J., O'Connor, M.B., Lee, C.H., and Lee, T. (2003). TGF-beta signaling activates steroid hormone receptor expression during neuronal remodeling in the Drosophila brain. Cell 112, 303-315 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59394 | - |
dc.description.abstract | 探討神經發育(Neural development)的分子調控機制對了解如何建構健全的神經系統極其重要。本論文利用黃果蠅(Drosophila melanogaster)掌管學習與記憶功能的核心結構-蘑菇體(Mushroom body)-研究以下三個主題:神經元命運特化(Neuronal fate specification),樹突/軸突生長導向(Dendrite/Axon guidance)和神經重塑(Neuronal remodeling)。它們在神經發育扮演重要角色,因為神經幹細胞(Neural stem cell)決定它的子神經元(Daughter neuron)的細胞命運特化後,神經元的樹突/軸突會依特定方向性延展至正確位置,最後當個體逐漸發育成熟時,神經重塑使得特定的神經元具有完整功能或獲取新的功能。 果蠅估計約有13,600個基因,逐一篩選每一個基因是否影響神經發育,需要花費龐大的時間、人力及資源,由於微小核醣核酸(microRNA/miR)能同時對多個基因進行敲落(Knockdown),使得多重基因表現量下降,因此本論文研究透過過量表現miR對蘑菇體的發育影響作為快速篩選。果蠅目前已知有147個miRs,本論文針對137個miRs過量表現在果蠅蘑菇體中,發現有74個miRs會造成蘑菇體的異常表現型(Phenotype),其中的25個miRs為本論文感興趣與神經元命運特化,樹突/軸突生長導向及神經重塑相關。 先前本人所參與的一篇文獻指出,過量表達miR-34會導致神經重塑的缺失。本論文透過生物資訊學方式預測出可能被miR-34影響的目標基因(198個基因),再針對這其中的147基因個別地進行敲落。其中TGF-β受體baboon (babo)基因為miR-34的預測目標基因之一,而過往的研究已經指出babo可調控脫皮激素受體B1 (Ecdysone receptor B1)的表現進而掌控蘑菇體神經重塑。本人所參與的另一篇文獻,由過量表達miR-34以及mir-34基因突變的實驗結果,也證實miR-34的確會調控Babo的表現,所以此調控機制極可能是過量表達miR-34導致蘑菇體的神經重塑缺失的主因之一。在此文獻中,本人也是第一個將Babo在果蠅大腦的各個區域的表現,做了完整的描述。除了babo基因之外,maternal gene required for meiosis (mamo)基因可能是另一個miR-34目標基因,當敲落mamo之後同樣顯示出蘑菇體神經重塑缺失的結果,有趣的是,除了神經重塑外, mamo亦主導著蘑菇體神經元的命運特化,然而mamo基因如何同時參與在神經重塑和細胞命運特化的兩個過程,還需進一步地去釐清。 總之,本論文研究利用過量表現miR來快速篩選對於果蠅蘑菇體神經元發育的影響,進一步選擇欲研究的表現型,然後再去找尋出受到特定的miR調控的可能目標基因,藉此有效率的方式,希望能夠在短時間內找出感興趣的基因以便進行研究分析,最終來瞭解影響神經發育的基因及分子調控的機制。 | zh_TW |
dc.description.abstract | Investigation of molecular mechanisms underlying neural development is important for the understanding of the construction of the functional nervous system. Mushroom bodies (MBs) of Drosophila melanogaster, which execute the essential function in learning and memory, were used in this thesis to address three major issues of neural development, including neuronal fate specification, dendrite/axon guidance and neuronal remodeling. The importance of these processes is as follows: once daughter neurons, derived from neural stem cells, specify their cell fate, they extend dendrites/axons to proper locations to make neuronal connections. Sometimes, neurons undergo the neuronal remodeling process to remake new neuronal connections at the late developmental stage in order to form the functional nervous system. Since Drosophila contains roughly 13,600 genes, it is time consuming and labor intensive to examine each gene one by one for the causal effect on neural development. In this thesis, by taking advantage of the potential ability of microRNAs (miRs, a class of non-coding RNAs) in knocking down the expression of multiple genes, miRs were overexpressed for their causal effects on MB development. 137 miRs out of 147 known miRs in Drosophila were overexpressed and 74 miRs were found to cause abnormal MB phenotypes. Among those 74 miRs, 25 of them potentially affected neuronal fate specification, dendrite/axon guidance and neuronal remodeling. A previous report (with my contribution) has shown that miR-34 overexpression resulted in neuronal remodeling defect in MB neurons. In this thesis, through the bioinfomatics approach, 147 out of 198 predicted miR-34 target genes were selected for examining their possible roles in MB neuronal remodeling. A putative miR-34 target gene, baboon (babo) encoding a TFG-β receptor, is known for its role in MB neuronal remodeling by regulating the expression of ecdysone receptor B1. A recent report (also with my contribution) via loss- and gain-of-function studies of miR-34 has demonstrated that miR-34 indeed regulated the expression of Babo and the MB neuronal remodeling defect induced by miR-34 overexpression was likely due to downregulation of Babo. In this report, I, for the first time, comprehensively depicted the Babo expression pattern in the Drosophila brain. In addition to babo, maternal gene required for meiosis (mamo), the other putative miR-34 target gene, was found to participate not only in neuronal remodeling but also in neuronal fate specification of MB neurons. Future investigation is needed for deciphering on how mamo regulates both neuronal remodeling and neuronal fate specification in MB neurons. In conclusion, in this thesis, overexpression of miRs was used to quickly identify the ones that affect MB development. Followed by searching for target genes of those identified miRs of interest that affect MB development, this thesis provides an alternative approach to quickly identify genes and molecules of interest to investigate the mechanisms underlying neural development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:22:25Z (GMT). No. of bitstreams: 1 U0001-1408202011225000.pdf: 8857026 bytes, checksum: eb9b5701c25fafbddb05a933eb41726a (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 1 致謝 2 關鍵字縮寫 3 中文摘要 4 ABSTRACT 6 目錄 8 圖目錄 10 表目錄 11 緒論 12 材料與方法 16 1. 果蠅飼養及果蠅株的取得 16 2. 目標基因資料庫備製及基因敲落的RNAi果蠅株的選擇 16 3. 基因敲落辦法及果蠅大腦樣本的備製 17 結果 19 1. 利用過量表現miRs篩選出其中會影響蘑菇體發育的miRs 19 2. 研究可能被miR-34調控的基因與蘑菇體神經元發育的關係 21 3. 過量表現miR-34降低Babo的表現造成蘑菇體神經元軸突修剪缺陷 23 4. 研究可能被miR-34調控的基因與蘑菇體神經元命運特化的關係 24 討論 27 1. 利用過量表現miRs來進行蘑菇體神經發育研究的優缺點 27 2. 針對因沒好抗體卻欲知某重要蛋白質表現的策略 27 3. 對於babo以及mamo參與軸突修剪缺陷以及細胞命運特化的探討 28 圖 30 表 50 參考文獻 64 | |
dc.language.iso | zh-TW | |
dc.title | 微小核醣核酸群及微小核醣核酸-34所調控的基因對影響果蠅蘑菇體神經發育的研究 | zh_TW |
dc.title | The study of microRNAs and miR-34 target genes in neural development of the Drosophila mushroom bodies | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.author-orcid | 0000-0002-0663-9492 | |
dc.contributor.coadvisor | 游宏祥(Hung-Hsiang Yu),周子賓(Tze-Bin Chou) | |
dc.contributor.oralexamcommittee | 溫進德(Jin-Der Wen),林書葦(Sue-wei Lin) | |
dc.subject.keyword | 蘑菇體,細胞命運特化,樹突/軸突生長導向,神經重塑,微小核醣核酸,蛻皮激素受體B1,babo基因,mamo基因, | zh_TW |
dc.subject.keyword | Mushroom body,Cell fate specification,Dendrite/axon guidance,Neuronal remodeling,microRNA,Ecdysone receptor B1,babo,mamo, | en |
dc.relation.page | 67 | |
dc.identifier.doi | 10.6342/NTU202003385 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-20 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1408202011225000.pdf 目前未授權公開取用 | 8.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。