請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59361完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林菀俞(Wan-Yu Lin) | |
| dc.contributor.author | Chih-Yu Chang | en |
| dc.contributor.author | 張芷榆 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:21:29Z | - |
| dc.date.available | 2023-09-01 | |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-14 | |
| dc.identifier.citation | Aguet F, Barbeira AN, Bonazzola R, Brown A, Castel SE, Jo B, Kasela S, Kim-Hellmuth S, Liang Y, Oliva M and others. 2019. The GTEx Consortium atlas of genetic regulatory effects across human tissues. bioRxiv:787903. Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B, Mohammadi P, Park Y, Parsana P, Segrè AV and others. 2017. Genetic effects on gene expression across human tissues. Nature 550(7675):204-213. An J, Gharahkhani P, Law MH, Ong J-S, Han X, Olsen CM, Neale RE, Lai J, Vaughan TL, Gockel I and others. 2019. Gastroesophageal reflux GWAS identifies risk loci that also associate with subsequent severe esophageal diseases. Nature Communications 10(1):4219. Appasani K. 2016. Genome-Wide Association Studies: From Polymorphism to Personalized Medicine: Cambridge University Press. Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, Torstenson ES, Shah KP, Garcia T, Edwards TL and others. 2018. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nature Communications 9(1):1825. Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, Duncanson A, Kwiatkowski DP, McCarthy MI, Ouwehand WH, Samani NJ and others. 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661-678. Calabrò M, Drago A, Sidoti A, Serretti A, Crisafulli C. 2015. Genes involved in pruning and inflammation are enriched in a large mega-sample of patients affected by Schizophrenia and Bipolar Disorder and controls. Psychiatry research 228(3):945-949. Chen CH, Yang JH, Chiang CWK, Hsiung CN, Wu PE, Chang LC, Chu HW, Chang J, Song IW, Yang SL and others. 2016. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet 25(24):5321-5331. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, Vrieze SI, Chew EY, Levy S, McGue M and others. 2016. Next-generation genotype imputation service and methods. Nature Genetics 48(10):1284-1287. Doherty MJ, Young PR, Cohen PT. 1996. Amino acid sequence of a novel protein phosphatase 1 binding protein (R5) which is related to the liver- and muscle-specific glycogen binding subunits of protein phosphatase 1. FEBS Lett 399(3):339-43. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. 2010. Missing heritability and strategies for finding the underlying causes of complex disease. Nature reviews. Genetics 11(6):446-450. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, Eyler AE, Denny JC, Consortium GT, Nicolae DL and others. 2015a. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet 47(9):1091-8. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, Eyler AE, Denny JC, Nicolae DL, Cox NJ and others. 2015b. A gene-based association method for mapping traits using reference transcriptome data. Nature Genetics 47(9):1091-1098. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. 2009. The incidence of co-morbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 9(1):88. Hu Y, Li M, Lu Q, Weng H, Wang J, Zekavat SM, Yu Z, Li B, Gu J, Muchnik S and others. 2019. A statistical framework for cross-tissue transcriptome-wide association analysis. Nature Genetics 51(3):568-576. Jiao S, Hsu L, Bézieau S, Brenner H, Chan AT, Chang-Claude J, Le Marchand L, Lemire M, Newcomb PA, Slattery ML and others. 2013. SBERIA: set-based gene-environment interaction test for rare and common variants in complex diseases. Genet Epidemiol 37(5):452-64. Kamburov A, Pentchev K, Galicka H, Wierling C, Lehrach H, Herwig R. 2011. ConsensusPathDB: toward a more complete picture of cell biology. Nucleic Acids Res 39(Database issue):D712-7. Kamburov A, Stelzl U, Lehrach H, Herwig R. 2013. The ConsensusPathDB interaction database: 2013 update. Nucleic acids research 41(Database issue):D793-D800. Kamburov A, Wierling C, Lehrach H, Herwig R. 2009. ConsensusPathDB--a database for integrating human functional interaction networks. Nucleic Acids Res 37(Database issue):D623-8. Kraft P, Zeggini E, Ioannidis JP. 2009. Replication in genome-wide association studies. Stat Sci 24(4):561-573. Lawlor DA, Fraser A, Ebrahim S, Smith GD. 2007. Independent associations of fasting insulin, glucose, and glycated haemoglobin with stroke and coronary heart disease in older women. PLoS medicine 4(8):e263-e263. Lin W-Y, Huang C-C, Liu Y-L, Tsai S-J, Kuo P-H. 2018. Polygenic approaches to detect gene–environment interactions when external information is unavailable. Briefings in Bioinformatics 20(6):2236-2252. Lin W-Y, Huang C-C, Liu Y-L, Tsai S-J, Kuo P-H. 2019a. Genome-Wide Gene-Environment Interaction Analysis Using Set-Based Association Tests. Frontiers in genetics 9:715-715. Lin W-Y, Huang C-C, Liu Y-L, Tsai S-J, Kuo P-H. 2019b. Genome-Wide Gene-Environment Interaction Analysis Using Set-Based Association Tests. Frontiers in Genetics 9(715). Lin W-Y, Lin Y-S, Chan C-C, Liu Y-L, Tsai S-J, Kuo P-H. 2020. Using Genetic Risk Score Approaches to Infer Whether an Environmental Factor Attenuates or Exacerbates the Adverse Influence of a Candidate Gene. Frontiers in Genetics 11(331). Lin X, Lee S, Wu MC, Wang C, Chen H, Li Z, Lin X. 2016. Test for rare variants by environment interactions in sequencing association studies. Biometrics 72(1):156-64. Liu Q, Chen LS, Nicolae DL, Pierce BL. 2016. A unified set-based test with adaptive filtering for gene-environment interaction analyses. Biometrics 72(2):629-638. Mitchell KJ. 2012. What is complex about complex disorders? Genome biology 13(1):237-237. Müssig K, Staiger H, Machicao F, Kirchhoff K, Guthoff M, Schäfer SA, Kantartzis K, Silbernagel G, Stefan N, Holst JJ and others. 2009. Association of Type 2 Diabetes Candidate Polymorphisms in lt;em gt;KCNQ1 lt;/em gt; With Incretin and Insulin Secretion. Diabetes 58(7):1715. Ottman R. 1996. Gene-environment interaction: definitions and study designs. Preventive medicine 25(6):764-770. Pascoe L, Tura A, Patel SK, Ibrahim IM, Ferrannini E, Zeggini E, Weedon MN, Mari A, Hattersley AT, McCarthy MI and others. 2007. Common Variants of the Novel Type 2 Diabetes Genes lt;em gt;CDKAL1 lt;/em gt; and lt;em gt;HHEX/IDE lt;/em gt; Are Associated With Decreased Pancreatic β-Cell Function. Diabetes 56(12):3101. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ and others. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American journal of human genetics 81(3):559-575. Rao P, Wang H, Fang H, Gao Q, Zhang J, Song M, Zhou Y, Wang Y, Wang W. 2016. Association between IGF2BP2 Polymorphisms and Type 2 Diabetes Mellitus: A Case-Control Study and Meta-Analysis. International journal of environmental research and public health 13(6):574. Sheen Y-J, Hsu C-C, Jiang Y-D, Huang C-N, Liu J-S, Sheu WH-H. 2019. Trends in prevalence and incidence of diabetes mellitus from 2005 to 2014 in Taiwan. Journal of the Formosan Medical Association 118:S66-S73. Simonis-Bik AM, Nijpels G, van Haeften TW, Houwing-Duistermaat JJ, Boomsma DI, Reiling E, van Hove EC, Diamant M, Kramer MH, Heine RJ and others. 2010. Gene variants in the novel type 2 diabetes loci CDC123/CAMK1D, THADA, ADAMTS9, BCL11A, and MTNR1B affect different aspects of pancreatic beta-cell function. Diabetes 59(1):293-301. Sun R, Lin X. 2017. Set-Based Tests for Genetic Association Using the Generalized Berk-Jones Statistic. Wen CP, Cheng TYD, Tsai SP, Hsu HL, Wang SL. 2005. Increased Mortality Risks of Pre-Diabetes (Impaired Fasting Glucose) in Taiwan. Diabetes Care 28(11):2756-2761. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59361 | - |
| dc.description.abstract | 現今有許多方法可以檢測基因與環境因子之間的交互作用效應。全基因組關聯研究 (Genome-wide association studies, GWAS) 已偵測出某些染色體區域與可能導致疾病或性狀的環境因子產生交互作用。但是,目前尚不清楚大多數已發表的基因-環境因子交互作用的生物學機制。
為了測試單核苷酸多態性 (Single-Nucleotide Polymorphisms, SNPs) 與環境因子在感興趣之性狀上的交互作用,我們提出了一種新的統計方法,即適性整合法 (Adaptive Integration Method, AIM) 。首先,我們通過使用PrediXcan 和基因型組織表達庫 (Genotype-Tissue Expression ,GTEx) 通過不同組織的推測表達定量性狀基因座 (expression quantitative trait loci, eQTLs) 預測轉錄組。接下來,我們將預測的轉錄組轉換為「轉錄組風險評分」 (Transcriptome Risk Score , TRS) ,並測試了感興趣之性狀與每個組織中TRS之間的關聯。因為並非所有組織都與感興趣之性狀相關,所以只有某些組織的轉錄組可以作為基因與環境因子交互作用的證據。因此,我們採用適性整合方法 (AIM) 偵測適性聯結來自多個組織的基因-環境因子交互作用的信號。 例如,我們評估基因和腰臀比 (Waist-to-Hip Ratio, WHR) 對於空腹血糖的關聯性。我們的分析包括來自「臺灣人體生物資料庫」 (Taiwan Biobank, TWB) 中,在TWB2的58,774名參與者,使用密西根插補伺服器插補大約600萬個SNPs位點。通過使用我們的AIM,使用顯著性水準為2×〖10〗^(-6)共偵測出51個基因,為了呈現可複製性,在TWB1的25,460名參與者進行同樣的分析步驟,使用顯著水準0.05,一共檢測出10個顯著基因。從DNA角度來看,根據目前以基因為單位的分析方法,在TWB 2.0中的51個基因有18個被偵測出與WHR對於空腹血糖中有交互作用。例如,PPP1R3C (protein phosphatase 1 regulatory subunit 3C) 基因在DNA水平和RNA水平上都共定位以顯示與WHR的顯著交互作用。 | zh_TW |
| dc.description.abstract | There are bountiful methods for detecting the interactions between genes and environmental factors. Genome-wide association studies (GWAS) have identified some chromosomal regions interacting with environmental factors that may be responsible for diseases or traits. However, the biological mechanisms underlying most published gene-environment interactions have been still unclear.
To test for the interactions of single-nucleotide polymorphisms (SNPs) with environmental factors on traits of interest, we proposed a new statistical method, Adaptive Integration Method (AIM). Firstly, we predicted transcriptome by putative expression quantitative trait loci (eQTLs) of different tissues by using PrediXcan and the Genotype-Tissue Expression (GTEx) library. Next, we transformed the predicted transcriptome into transcriptome risk score (TRS) and tested associations between the trait of interest and TRS in each tissue. Because not all tissues are related to the trait of interest, only transcriptome from some tissues may serve as evidence of gene-environment interactions. Therefore, we adaptively integrated the gene-environment interaction signals from multiple tissues with our Adaptive Integration Method (AIM). As an example, we evaluated the interactions between genes and waist-to-hip ratio (WHR) on fasting glucose. Our analysis included 58,774 participants from the Taiwan Biobank 2.0 (TWB), with approximately 6 million imputed SNPs by the Michigan Imputation Server. By using our AIM, a total of 51 genes were identified at the significance level of 2 × 10-6. To replicate the results, we performed the analysis for 25,460 participants from the Taiwan Biobank 1.0. We replicated 10 significant genes with p-value<0.05. From the DNA perspective, 18 out of the 51 genes identified from TWB 2.0 were also confirmed to have interactions with WHR on fasting glucose according to current gene-based analysis methods. For example, the PPP1R3C (protein phosphatase 1 regulatory subunit 3C) gene was colocalized to exhibit significant interaction with WHR, from both the DNA level and the RNA level. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:21:29Z (GMT). No. of bitstreams: 1 U0001-1408202011463700.pdf: 1208220 bytes, checksum: 58396c32280e5d636d65e2b5a3d72c1e (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試審定書 i 致謝 ii 中文摘要 iii 英文摘要 v 目錄 vii 表目錄 viii 圖目錄 ix 第一章 前言 1 第二章 材料與方法 3 2.1 適性整合法 3 2.2 競爭方法 6 2.3應用於臺灣人體生物資料庫 8 第三章 模擬 11 3.1 型一錯誤率 11 3.2 統計檢定力 11 第四章 結果 14 第五章 討論 17 參考文獻 37 | |
| dc.language.iso | zh-TW | |
| dc.subject | 腰臀比 | zh_TW |
| dc.subject | 基因—環境因子交互作用 | zh_TW |
| dc.subject | 轉錄體 | zh_TW |
| dc.subject | 臺灣人體生物資料庫 | zh_TW |
| dc.subject | 基因型組織表達庫 | zh_TW |
| dc.subject | 空腹血糖值 | zh_TW |
| dc.subject | Taiwan Biobank | en |
| dc.subject | Genotype-Tissue Expression (GTEx) | en |
| dc.subject | fasting glucose | en |
| dc.subject | transcriptome | en |
| dc.subject | gene-environment interaction | en |
| dc.subject | waist-to-hip ratio | en |
| dc.title | 適性整合法聯結多組織之預測轉錄體以進行基因環境交互作用分析 | zh_TW |
| dc.title | Adaptive Integration Method to Combine Predicted Transcriptome from Multiple Tissues for Gene-Environment Interaction Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李文宗(Wen-Chung Lee),盧子彬(Tzu-Pin Lu),楊欣洲(Hsin-Chou Yang) | |
| dc.subject.keyword | 基因—環境因子交互作用,轉錄體,臺灣人體生物資料庫,基因型組織表達庫,空腹血糖值,腰臀比, | zh_TW |
| dc.subject.keyword | gene-environment interaction,transcriptome,Taiwan Biobank,Genotype-Tissue Expression (GTEx),fasting glucose,waist-to-hip ratio, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU202003391 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-15 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202011463700.pdf 未授權公開取用 | 1.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
