請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59355完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文(Kevin Chia-Wen Wu) | |
| dc.contributor.author | Fei-Chang Chen | en |
| dc.contributor.author | 陳非常 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:21:20Z | - |
| dc.date.available | 2017-07-07 | |
| dc.date.copyright | 2017-07-07 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-29 | |
| dc.identifier.citation | 1) M. Mikkelsen, M. Jørgensn and F. C. Krebs, Energy Environ. Sci., 2010, 3, 43.
2) E. A. Roth, S. Agarwal and R. K. Gupta, Energy Fuels, 2013, 27, 4129. 3) Q. Wang, J. Luo, Z. Zhong and A. Borgna, Energy Environ. Sci., 2011, 4, 42. 4) P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber and T. E. Muller, Energy Environ. Sci., 2012, 5, 7281 5) D.M. D'Alessandro, B. Smit and J. R. Long, Angew. Chem., Int. Ed., 2010, 49, 6058. 6) G. Srinivas, J. Burress and T. Yildirim, Energy Environ. Sci., 2012, 5, 6453. 7) J. P. Marco-Lozar, M. Kunowsky, F. Suarez-Garcia, J. D. Carruthers and A. Linares-Solano, Energy Environ. Sci., 2012, 5, 9833. 8) M. Sevilla and A. B. Fuertes, Energy Environ. Sci., 2011, 4, 1765. 9) V. Presser, J. McDonough, S.-H. Yeon and Y. Gogotsi, Energy Environ. Sci., 2011, 4, 3059. 10) J. W. Burress, S. Gadipelli, J. Ford, J. M. Simmons, W. Zhou and T. Yildirim, Angew. Chem. Int. Ed., 2010, 49, 8902. 11) H. L. Jiang, B. Liu, Y. Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong and Q. Xu, J. Am. Chem. Soc., 2011, 133, 11854. 12) V. Chandra, S. U. Yu, S. H. Kim, Y. S. Yoon, D. Y. Kim, A. H. Kwon, M. Meyyappan and K. S. Kim, Chem. Commun., 2012, 48, 735. 13) W. Chaikittisilp, K. Ariga and Y. Yamauchi, J. Mater. Chem. A., 2013, 1, 14. 14) H. L. Guo, Q. M. Gao, J. Power Sources., 2009, 186, 551–556 15) G. P. Hao, W. C. Li, D. Qian, A. H. Lu, Adv. Mater., 2010, 22, 853–857 16) H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, Nano Lett., 2011, 11, 2472–2477 17) Y. H. Lee, Y. F. Lee, K. H. Chang, C. C. Hu, Elec. Chem. Commun., 2011, 13, 50–53 18) Y. Xia, R. Mokaya, G. S. Walker, Y. Zhu, Adv. Energy Mater., 2011, 1, 678–683 19) Y. Zhao, X. Liu, K. X. Yao, L. Zhao, Y. Han, Chem. Mater., 2012, 24, 4725−4734 20) L. Qie, W. Chen, H. Xu, X. Xiong, Y. Jiang, F. Zou, X. Hu, Y. Xin, Z. Zhang, Y. Huang, Energy Environ. Sci., 2013, 6, 2497–2504 21) L. Estevez, R. Dua, N. Bhandari, A. Ramanujapuram, P. Wang, E. P. Giannelis, Energy Environ. Sci., 2013, 6, 1785–1790. 22) G. Srinivas, V. Krungleviciute, Z.X. Guoa, T. Yildirim, Energy Environ. Sci., 2014, 7, 335–342 23) S. Dutta, A. Bhaumik, K. C. W. Wu, Energy Environ. Sci., 2014, 7, 3574-3592 24) W. He, C. Jiang, J. Wang, L. Lu, Angew. Chem. Int. Ed., 2014, 53, 9503 –9507. 25) L. F. Chen, Z. H. Huang, H. W. Liang, W. T. Yao, Z. Y. Yua, S. H. Yu, Energy Environ. Sci., 2013, 6, 3331–3338 26) L. F. Chen, Z. H. Huang, H. W. Liang, Q. F. Guan, S. H. Yu, Adv. Mater., 2013, 25, 4746–4752. 27) a) J. Liang, X. Du, C. Gibson, X.W. Du, S. Z. Qiao, Adv. Mater., 2013, 25, 6226; 28) K. S. W. Sing, D. H. Everett, R. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem., 1982, 54, 2201−2218. 29) J. Wang, I. Senkovska, M. Oschartz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu, S. Kaskel, J. Mater. Chem. A., 2013, 1, 10951−10961. 30) a) L. Qie, W. M. Chen, H. H. Xu, X. Q. Xiong, Y. Jiang, F. Zou, X. L. Hu, Y. Xin, Z. L. Zhang, Y. H. Huang, Energy Environ. Sci., 2013, 6, 2497–2504; b) M. Armandi, B. Bonelli, F. Geobaldo and E. Garrone, Microporous Mesoporous Mater., 2010, 132, 414–420 31) a) D. Hulicova-Jurcakova, M. Seredych, G. Q. Lu, T. Bandosz, J. Adv. Funct. Mater., 2009, 19, 438-447; b) F. Su, C. K. Poh, J. S. Chen, G. Xu, D. Wang, Q. Li, J. Lin, X. W. Lou, Energy Environ. Sci., 2011, 4, 717-724; c) M. Li, J. Xue, J. Phys. Chem. C., 2014, 118, 2507-2517. 32) a) E. S. Kikkinides, R. T. Yang, S. H. Cho, Ind. Eng. Chem. Res., 1993, 32, 2714; b) R. V. Siriwardane, M. S. Shen, E. P. Fisher, J. A. Poston, Energy Fuels., 2001, 15, 279. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59355 | - |
| dc.description.abstract | 我們成功使用間苯二酚-甲醛-三氨基嘧啶(RF-TPF)作為碳源,三維大孔模板(纖維素濾紙)作為結構構建模板以及產孔媒介,輔以氫氧化鉀活化處理以產生微孔,最終製得三維多孔碳(以HPC代表)。HPC樣品表現出極高的比表面積(2535 m2g-1),並且在纖維素框架的大孔之外,另有以微孔和中孔為主的多級孔。樣品的最高二氧化碳吸收量在273K達到6.0 mmol·g−1,而在298K下則是3.7 mmol·g−1。二氧化碳吸附結果表明,以此法製得的HPC可以期待作為良好的材料廣泛應用在這一領域。 | zh_TW |
| dc.description.abstract | We have developed a novel and general strategy for the construction of 3D hierarchically porous carbon (denoted as HPC) by using resorcinol-formaldehyde-triaminopyrimidine (RF-TPF) as carbon source and a 3D macroporous template (cellulose filter paper) as both structure directing and pore generating agent along with the assistance of KOH activation for creating micropores. The HPC sample shows a super-high specific surface area of 2535 m2g-1 with hierarchical pores of majorly micropores and mesopores in addition to macropores via the cellulose framework templating as well as fantastic CO2 uptake of 6.0 mmol·g−1 at 273K and 3.7 mmol·g−1 at 298K. Our CO2 adsorption results show capability of being a candidate for a range of future applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:21:20Z (GMT). No. of bitstreams: 1 ntu-106-R02524096-1.pdf: 1578751 bytes, checksum: 6ffdafd3cb28666c7b3a9c6fc9e2edb9 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 CO2 capture 1 1.2 Post-combustion capture 1 1.3 Solid sorbents 2 Chapter 2 Literature survey 2 2.1 Carbon-based sorbents 2 2.2 Nitrogen-doping 3 2.3 Cellulose templating 5 Chapter 3 Objective 7 Chapter 4 Experimental 8 4.1 Chemicals 8 4.2 Template 8 4.3 Synthesis of HPC from RF-TPF@LPCT 10 4.4 Characterization 15 4.4.1 SEM 15 4.4.2 TGA 15 4.4.3 N2 ad/desorption 15 Chapter 1 Introduction 1 1.1 CO2 capture 1 1.2 Post-combustion capture 1 1.3 Solid sorbents 2 Chapter 2 Literature survey 2 2.1 Carbon-based sorbents 2 2.2 Nitrogen-doping 3 2.3 Cellulose templating 5 Chapter 3 Objective 7 Chapter 4 Experimental 8 4.1 Chemicals 8 4.2 Template 8 4.3 Synthesis of HPC from RF-TPF@LPCT 10 4.4 Characterization 15 4.4.1 SEM 15 4.4.2 TGA 15 4.4.3 N2 ad/desorption 15 4.4.4 Mercury porosimetry 15 4.4.5 XRD 16 4.4.6 XPS 18 Chapter 5 Results and discussion 20 5.1 Fabrication process observed by TGA and SEM 20 5.2 Role of cellulose templating 22 5.3 Role of KOH activation 23 5.4 Role of pyrolysis temperature 24 5.5 Isosteric heat 40 5.6 Conclusions 42 References 42 References for Table 5. 46 | |
| dc.language.iso | en | |
| dc.subject | 吸附 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 模板 | zh_TW |
| dc.subject | 摻氮 | zh_TW |
| dc.subject | 活化 | zh_TW |
| dc.subject | 多孔碳 | zh_TW |
| dc.subject | adsorption | en |
| dc.subject | CO2 | en |
| dc.subject | porous carbon | en |
| dc.subject | template | en |
| dc.subject | N-doping | en |
| dc.subject | activation | en |
| dc.title | 利用纖維素框架合成摻氮多孔碳及其於二氧化碳吸附之應用 | zh_TW |
| dc.title | Cellulose Framework Directed Construction of Hierarchically Porous High-Surface Area Nitrogen-Doped Carbon for CO2 Capture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林嘉和,侯嘉洪,劉守恆,謝發坤 | |
| dc.subject.keyword | 二氧化碳,多孔碳,模板,摻氮,活化,吸附, | zh_TW |
| dc.subject.keyword | CO2,porous carbon,template,N-doping,activation,adsorption, | en |
| dc.relation.page | 46 | |
| dc.identifier.doi | 10.6342/NTU201701052 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-06-29 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
