請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59351完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 胡振國(Jenn-Gwo Hwu) | |
| dc.contributor.author | Ming-Han Yang | en |
| dc.contributor.author | 楊明翰 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:21:13Z | - |
| dc.date.available | 2017-07-13 | |
| dc.date.copyright | 2017-07-13 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-29 | |
| dc.identifier.citation | [1] J. Bardeen and W. H. Brattain, “The Transistor, A Semi-Conductor Triode,” Phys. rev., vol. 74, no. 2, pp. 230-231, Jul. 1948.
[2] J. Kilby, “Invention of the Integrated Circuit,” IEEE Trans. Electron Devices, vol. 23, no. 7, pp. 648-654, Jul. 1976. [3] R. Noyce, “Semiconductor Device and Lead Structure,” US Patent #2981877A, Apr. 1961. [4] D. Kahng and M. M. Atalla, “Silicon-Silicon Dioxide Field Induced Surface Devices,” in IRE-AIEE Solid-state Device Res. Conf., (Carnegie Inst. of Technol., Pittsburgh, PA), 1960. [5] F. M. Wanlass, “Low Stand-by Power Complementary Field Effect Circuitry,” US Patent #3356858A, Dec. 1967. [6] G. E. Moore, “Progress in Digital Integrated electronics,” in IEDM Tech. Dig., pp. 11-13, 1975. [7] International Technology Roadmap for Semiconductor (ITRS): 2015, Semiconductor Industry Association (SIA), Available: www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/. [8] B. H. Lee, S. C. Song, R. Choi and P. Kirsch, “Metal Electrode/High-k Dielectric Gate-Stack Technology for Power Management,” IEEE Trans. Electron Devices, vol. 55, no. 1, pp. 8-20, Jan. 2008. [9] Sujith M. B., F. P. Nesamani I., L. Prabha V., A. E. Chacko and R. Divakaran, “Design Optimization of Segmented-Channel MOSFET using High-K Dielectric Material,” IEEE Int. Conf. Electron. Commun. Syst. (ICECS), Feb. 2014. [10] M. Y. Doghish and F. D. Ho, “A Comprehensive Analytical Model for Metal-Insulator-Semiconductor (MIS) Devcies, ” IEEE Trans. Electron Devices, vol. 39, no. 12, pp. 2771-2780, Dec. 1992. [11] M. Y. Doghish and F. D. Ho, “A Comprehensive Analytical Model for Metal-Insulator-Semiconductor (MIS) Devcies: A Solar Cell Application, ” IEEE Trans. Electron Devices, vol. 40, no. 8, pp. 1446-1454, Aug. 1993. [12] R. Padmanabhan, O. Sorias, O. Eyal, V. Mikehelashvili, M. Orenstein, G. Eisenstein, “Responsivity Enhancement of MIS Photodetectors on SOI Substrates by Plasmonic Nanoantennas,“ IEEE Nanotechnol. Mater. Device Conf. (NMDC), Oct. 2016. [13] S. Kim, S. Cho, K. C. Ryoo and B. G. Park, “Effects of Conducting Defects on Resistive Switching Characteristics of SiNx-Based Resistive Random-Access Memory with MIS Structure,” J. Vac. Sci. Technol. B 33, 062201 (2015). [14] J. Y. Chen, “Effect of Compensatory Embedded Aluminum on the Electrical Characteristics of MIS Tunnel Diode with Ultrathin Oxide,” M.S. Thesis Dept. Elect. Eng. Nat. Taiwan Univ., Taipei, Taiwan, R.O.C., 2016. [15] C. S. Liao and J. G. Hwu, “Subthreshold Swing Reduction by Double Exponential Control Mechanism in an MOS Gated-MIS Tunnel Transistor,” IEEE Trans. Electron Devices, vol. 62, no. 6, pp. 2061-2065, Jun. 2015. [16] C. S. Liao, W. C. Kao and J. G. Hwu, “Energy-Saving Write/Read Operation of Memory Cell by Using Separated Storage Device and Remote Reading With an MIS Tunnel Diode Sensor,” IEEE J. Electron Devices Soc. vol. 4, no. 6, pp. 424-429, Jul. 2016. [17] Y. K. Lin and J. G. Hwu, “Photosensing by Edge Schottky Barrier Height Modulation Induced by Lateral Diffusion Current in MOS(p) Photodiode,” IEEE Trans. Electron Devices, vol. 61, pp. 3217-3222, Sep. 2014. [18] P. F. Schmidt and W. Michel, “Anodic Formation of Oxide Films on Silicon,” J. Electrochem. Soc., vol. 104, no. 4, pp. 230-236, Apr. 1957. [19] M. Grecea, C. Rotaru, N. Nastase and G. Craciun, “Physical Properties of SiO2 Thin Films Obtained by Anodic Oxidation,” J. Mol. Struct., vol. 480-481, pp. 607-610, May 1999. [20] C. F. Yang, and J. G. Hwu, “Role of Fringing Field on the Characteristics of Metal-Oxide-Semiconductor Capacitors with Co-planar and Edge-removed Oxides,” AIP Advances 6, 125017 (2016). [21] Y. K. Lin, and J. G. Hwu, “Role of Lateral Diffusion Current in Perimeter-Dependent Current of MOS(p) Tunneling Temperature Sensors,” IEEE Trans. Electron Devices, vol. 61, no. 10, pp. 3562-3565, Oct. 2014. [22] H.W. Lu and J. G. Hwu, “Lateral Nonuniformity of the Tunneling Current of Al/SiO2/p-Si Capacitor in Inversion Region Due to Edge Fringing Field Effect,” ECS Trans., vol. 58, no. 7, pp. 339-344, Oct. 2013. [23] M. A. Green, F. D. King and J. Shewchun, “Minority Carrier MIS Tunnel Diodes and Their Application to Electron-and Photo-Voltaic Energy Conversion -I. Theory,” Solid-State Electron., vol. 17, no. 6, pp. 551-561, Jun. 1974. [24] N. Taoka, T. Yamamoto, M. Harada, Y. Yamashita, N. Sugiyama and S. Takagi, “Importance of Minority Carrier Response in Accurate Characterization of Ge Metal-Insulator-Semiconductor Interface Traps,” J. Appl. Phys. 106, 044506 (2009). [25] J. Y Cheng, H. T. Lu and J. G. Hwu, ”Metal-Oxide-Semiconductor Tunneling Photodiodes with Enhanced Deep Depletion at Edge by High-k Material,” Appl. Phys. Lett. 96, 233506 (2010). [26] B. Apter, U. Efron and E. Bahat-Treidel, “On The Fringing-Field Effect in Liquid-Crystal Beam-Steering Devices,” Appl. Opt. 43, 11 (2004). [27] J. Hu, Y. Liu, C. Z. Ning, R. Dutton and S.-M. Kang, ”Fringing Field Effects on Electrical Resistivity of Semiconductor Nanowire-Metal Contacts,” Appl. Phys. Lett. 92. 083503 (2008). [28] T. Ernst, C. Tinella, C. Raynaud and S. Cristoloveanu, ”Fringing Fields in Sub-0.1 um Fully Depleted SOI MOSFETs: Optimization of The Device Architecture,” Solid-state Electron. 46, 373-378 (2002). [29] T. Y. Chen and J. G. Hwu, “Sensitivity Enhancement of Metal-Oxide-Semiconductor Tunneling Photodiode with Trapped Electrons in Ultra-Thin SiO2 Layer,” ECS Trans., vol. 58, no. 8, pp. 79-85, Oct. 2013. [30] M. Y. Doghish and F. D. Ho, “A Comprehensive Analytical Model for Metal-Insulator-Semiconductor (MIS) Devices,” IEEE Trans. Electron Devices, vol. 39, no. 12, pp. 2771-2780, Dec. 1992. [31] C. H. Lin and C. W. Liu, “Metal-Insulator-Semiconductor Photodetectors,” Sensors 10, pp. 8797-8826 (2010). [32] S. Morita, A. Shinozaki, Y. Morita, K. Nishimura, T. Okazaki, S. Urabe and M. Morita, “Tunneling Current through Ultrathin Silicon Dioxide Films under Light Exposure,” Jpn. J. Appl. Phys., vol. 43, no. 11B. pp. 7857-7860, Nov. 2004. [33] A. R. Trivedi, K. Z. Ahmed and S. Mukhopadhyay, “Negative Gate Transconductance in Gate/Dource Vverlapped Heterojunction Tunnel FET and Application to Single Transistor Phase Encoder,” IEEE Electron Device Lett., vol. 36, no. 2, pp. 201–203, Feb. 2015. [34] B. Nauta and E. Seevinck, “Linear CMOS Transconductance Element for VHF Filters,” Electron. Lett., vol. 25, no. 7, pp. 448–450, Mar. 1989. [35] B. C. Lai and J. Y. M. Lee, “The Observation of Negative Transconductance Effect Caused by Real-Space-Transfer of Electrons in Metal Oxide Semiconductor Field Effect Transistors Fabricated with Ta2O5 Gate Dielectric,” IEEE Electron Device Lett., vol. 22, no. 3, pp. 142–144, Mar. 2001. [36] K. Ismail, W. Chu, A. Yen, D. A. Antoniadis and H. I. Smith, “Negative Transconductance and Negative Differential Resistance in a Grid-Gate Modulation-Doped Field-Effect Transistor,” Appl. Phys. Lett., vol. 54, no. 5, pp. 460–462, Jan. 1989. [37] C. S. Liao and J. G. Hwu, “Remote Gate-Controlled Negative Transconductance in Gated MIS Tunnel Diode,” IEEE Trans. Electron Devices, vol. 63, no. 7, pp. 2864-2870, Jul. 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59351 | - |
| dc.description.abstract | 金氧半穿隧二極體因為具有深空乏區特殊的電特性,可以當作感測器使用。本篇論文主要探討鄰近耦合效應,強化此現象可以有效提高p型金氧半穿隧二極體的深空乏區穿隧電流。藉由增加被量測元件附近的浮接金氧半電容元件數目,或是藉由縮短它們彼此之間的距離,這兩個方法都可以強化蕭基位障調變機制,進而增益鄰近耦合現象,適合用來增加元件的工作電流。
n型金氧半穿隧二極體本身具有較高的穿隧電流,但是不適合做為感測器因為對元件周圍的少數載子濃度變化並不敏感;如果把p型金氧半穿隧二極體周圍的氧化層移除,穿隧電流會變得很小,但是光敏感性會變得非常強烈。這兩個現象來自於它們皆缺乏蕭基位障調變機制,前者是因為不具備蕭基位障所以會有較大的飽和穿隧電流,適合用於對周遭干擾絕緣、需要高工作電流的元件;後者是原本有蕭基位障但是因為移除氧化層的過程造成蕭基位障無法被調變引起的極小電流以及介電系數的改變引發的強化電場,可以用作需要高度光敏感性的感測器。 同時,在金氧半穿隧二極體中也可以測得負轉導現象,來自於少數載子的鄰近耦合效應。在TCAD模擬中可以看到電子的分布情況輔助所提的推測。該鄰近耦合效應可望將金氧半穿隧二極體用在製作非揮發性記憶體。 | zh_TW |
| dc.description.abstract | Metal-insulator-semiconductor (MIS) tunneling diode is a very promising sensor due to the maneuverability within the deep-depletion region in which the neighboring coupling effect between two adjacent devices is the major issue of concern in this thesis. To study the MIS deep-depletion tunneling current coupling phenomenon, a device pattern of one centric circle encircled by one or two surrounding rings was devised.
It was found that central MIS(p) tunneling current, with the help of Schottky barrier height modulation mechanism, is enhanced merely by locating more floating MIS(p) structures nearby, or by shortening their relative distance. Such could again be observed under light exposure. MIS(n) structure was also fabricated for comparison. It was found, with the lack of Schottky barrier height modulation mechanism, tunneling current is greater and almost immune to light irradiance compared to MIS(p). Besides, MIS(p) with its edge oxide being removed was also conducted to abate its Schottky barrier height modulation capability. Significantly lower deep-depletion tunneling current and invulnerability to adjacent minority-carrier condition were therefore achieved. Surprisingly, it offered smaller saturation voltage and better photosensitivity. The negative transconductance behavior in MIS(p) structure owing to the inversion-charge-coupling effect assisted by TCAD simulation verification was studied. It turned out with the removal of Schottky barrier height modulation mechanism weakens that behavior and the gate injection takes over. Furthermore, the neighboring coupling effect is a potential candidate for the application in emerging nonvolatile memory. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:21:13Z (GMT). No. of bitstreams: 1 ntu-106-R04943063-1.pdf: 4457704 bytes, checksum: 9827e6e96cb8538334bfc17dbc8a7765 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 I
摘要 III Abstract IV Contents VI Figure Captions VIII Table Captions XII Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Silicon Anodization 3 1-3 Co-Planar Oxide and Edge-Removed Oxide 5 1-4 Device Fabrication 5 1-5 Schottky Barrier Height Modulation Mechanism 6 1-6 Fringing Field Effect 7 1-7 Summary 8 Chapter 2 MIS Deep-Depletion Tunneling Current Coupling Phenomenon via Schottky Barrier Height Modulation Mechanism 11 2-1 Introduction 11 2-2 Results and Discussion 13 2-2-1 Lateral Coupling in Neighboring MIS(p) Structures 13 2-2-2 Coupling Dependency on Device Geometry 15 2-2-3 Weaker Coupling in Neighboring MIS(n) Structures 18 2-2-4 No Lateral Coupling with ER-OX Structures 19 2-2-5 TCAD Simulation 22 2-3 Summary 25 Chapter 3 MIS Deep-Depletion Tunneling Current Controlled by the Neighboring Biased Structure 41 3-1 Introduction 41 3-2 Results and Discussion 42 3-2-1 Current-Voltage Characteristics 42 3-2-2 Current-Time Characteristics 47 3-2-3 TCAD Simulation 48 3-3 Summary 49 Chapter 4 Conclusion and Future Work 55 4-1 Conclusion 55 4-2 Future Work 57 References 62 | |
| dc.language.iso | en | |
| dc.subject | 負轉導 | zh_TW |
| dc.subject | 金氧半 | zh_TW |
| dc.subject | 穿隧二極體 | zh_TW |
| dc.subject | 蕭基位障調變機制 | zh_TW |
| dc.subject | 鄰近耦合 | zh_TW |
| dc.subject | 光感測器 | zh_TW |
| dc.subject | tunneling diode | en |
| dc.subject | negative transconductance | en |
| dc.subject | photosensor | en |
| dc.subject | neighboring coupling | en |
| dc.subject | Schottky barrier height modulation | en |
| dc.subject | MIS | en |
| dc.title | 鄰近耦合效應對超薄金氧半電容深空乏穿隧電流之影響 | zh_TW |
| dc.title | Impact on Metal-Insulator-Semiconductor (MIS) Deep-Depletion Tunneling Current by Neighboring Coupling Effect | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林致廷(Chih-Ting Lin),鄭晃忠(Huang-Chung Cheng) | |
| dc.subject.keyword | 金氧半,穿隧二極體,蕭基位障調變機制,鄰近耦合,光感測器,負轉導, | zh_TW |
| dc.subject.keyword | MIS,tunneling diode,Schottky barrier height modulation,neighboring coupling,photosensor,negative transconductance, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201701178 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-06-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
