Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59328
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉佩玲(Pei-Ling Liu)
dc.contributor.authorWei-Jhen Huangen
dc.contributor.author黃薇甄zh_TW
dc.date.accessioned2021-06-16T09:20:36Z-
dc.date.available2020-08-24
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation[1] S. Sato and A. Kawamura, “A new estimation method of state of charge using terminal voltage and internal resistance for lead acid battery,” in Proceedings of the Power Conversion Conference, pp. 565–570, Osaka, Japan, April 2002.
[2] S. Rodrigues, N. Munichandraiah, and A. K. Shukla, “A review of state-of-charge indication of batteries by means of A.C. impedance measurements,” Journal of Power Sources, vol. 87, no. 1-2, pp. 12–20, 2000.
[3] F. Huet, “A review of impedance measurements for determi- nation of the state-of-charge or state-of-health of secondary batteries,” Journal of Power Sources, vol. 70, no. 1, pp. 59–69, 1998.
[4] L. Xu, J. P. Wang, and Q. S. Chen, “Kalman filtering state of charge estimation for battery management system based on a stochastic fuzzy neural network battery model,” Energy Conversion and Management, vol. 53, no. 1, pp. 33–39, 2012.
[5] A. J. Salkind, C. Fennie, P. Singh, T. Atwater, and D. E. Reisner, “Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology,” Journal of Power Sources, vol. 80, no. 1-2, pp. 293–300, 1999
[6] Cuma, M.U.; Koroglu, T. A comprehensive review on estimation strategies used in hybrid and battery electric vehicles. Renew. Sustain. Energy Rev. 2015, 42, 517–531.
[7] V. Pop, H. J. Bergveld, P. H. L. Notten, J. H. G. Op het Veld, and P. P. L. Regtien, “Accuracy analysis of the state-of-charge and remaining run-time determination for lithium-ion batteries,” Measurement, vol. 42, no. 8, pp. 1131–1138, 2009.
[8] J. Wang, B. Cao, Q. Chen, and F. Wang, “Combined state of charge estimator for electric vehicle battery pack,” Control Engineering Practice, vol. 15, no. 12, pp. 1569–1576, 2007.
[9] J. Kim and B. H. Cho, “State-of-charge estimation and state- of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system,” IEEE Transactions on Vehicular Technology, vol. 60, no. 9, pp. 4249–4260, 2011.
[10] J. Hong, S. Park and N. Chang, 'Accurate remaining range estimation for Electric vehicles,' 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), Macau, 2016, pp. 781-786.
[11] Varga, B.O.; Sagoian, A.; Mariasiu, F. Prediction of Electric Vehicle Range: A Comprehensive Review of Current Issues and Challenges. Energies 2019, 12, 946.
[12] Hucho, H. Aerodynamics of Road Vehicles, 4th ed.; SAE International: Warrendale, PA, USA, 1998.
[13] R. Ivanov, I. Evtimov, M. Sapundjiev, A model for investigation of energy characteristic of an electric car, Electric vehicles ЕМ`15, 131-137, (in Bulgarian), (2015)
[14] I. Evtimov, R. Ivanov and M. Sapundjiev “Energy consumption of auxiliary systems of electric cars”, MATEC Web of Conferences 133, 06002 (2017)
[15] Sarrafan, K., Sutanto, D., Muttaqi, K. M., Town, G. (2017). Accurate range estimation for an electric vehicle including changing environmental conditions and traction system efficiency. IET Electrical Systems in Transportation, 7(2), 117-124.
[16] Bi, J., Wang, Y., Shao, S., Cheng, Y. (2018). Residual range estimation for battery electric vehicle based on radial basis function neural network. Measurement, 128, 197-203.
[17] B. Pérez-Sánchez, O. Fontenla-Romero, B. Guijarro-Berdiñas, A review of adaptive online learning for artificial neural networks, Artif. Intell. Rev. 49 (2) (2018) 281–299.
[18] Y. Bengio, P. Simard and P. Frasconi, 'Learning long-term dependencies with gradient descent is difficult,' in IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, March 1994, doi: 10.1109/72.279181
[19] Smola, A.J., Schölkopf, B. A tutorial on support vector regression. Statistics and Computing 14, 199–222 (2004).
[20] Elman, J.L. (1990), Finding Structure in Time. Cognitive Science, 14: 179-211.
[21] F. A. Gers, J. Schmidhuber and F. Cummins, 'Learning to forget: continual prediction with LSTM,' 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), Edinburgh, UK, 1999, pp. 850-855 vol.2, doi: 10.1049/cp:19991218.
[22] Graves, Alex. (2013). Generating Sequences With Recurrent Neural Networks. ArXiv preprint arXiv: 1308.0850.
[23] Srivastava, Nitish Hinton, Geoffrey Krizhevsky, Alex Sutskever, Ilya Salakhutdinov, Ruslan. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research. 15. 1929-1958.
[24] Machine Learning Mastery (https://machinelearningmastery.com/blog/)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59328-
dc.description.abstract近年來,隨著油價上漲和環保意識抬頭,電動車的市場在台灣蓬勃發展。相較於傳統油車,電動車具備更高的能源效率並且對於環境的污染相對較少。然而國人對於電動車的購買以及使用依然有些許的隱憂,其中包含充電樁設立數量不足、對於電池電量消耗的不熟悉、過長的充電時間以及行駛里程上的限制,而上述的問題都會造成電動車駕駛者對於剩餘里程的焦慮,不確定剩餘電量是否能到達目的地。本研究之目標在於發展深度學習的模型來預測電動車剩餘里程,以得到更精準的剩餘里程預估來緩解駕駛者的焦慮。
本研究所採用的預測模型包括支持向量回歸 (Support vector regression, SVR)、人工神經網路 (Artificial neural network, ANN)、遞迴神經網路 (Recurrent neural network, RNN) 以及其延伸長短期記憶網路 (Long short-term memory, LSTM)。預測模型的輸入資料主要參考車輛物理模型以及輔助系統耗電,包括剩餘電量、車速、坡度、加速度、風速、天氣、空調系統的設定、車燈開啟狀態等,預測模型之輸出則為單位時間耗電量,再結合車速可得到單位耗電量可行駛的里程,以剩餘電量除以單位電量里程 (unit energy mileage),即可預估剩餘里程。
前述模型以華創車電提供之5台LUXGEN S3 EV電動車在夏季的行駛資料進行訓練,結果顯示,各模型對單位電耗里程之預測以2-time-step LSTM 模型預測結果最佳,其餘依次為1-time-step LSTM、2-time-step RNN、1-time-step RNN、ANN,SVR模型殿後,平均絕對百分比誤差分別為12.3%、15.7%、27.9%、31.3%、35.7%以及41.4%,顯見以2-time-step LSTM 模型預測單位耗電里程最具可行性。
本研究亦對2-time-step LSTM 進行參數分析,發現:1. 當車速在20至100 km/h之間,可行駛里程隨車速遞增; 2. 當剩餘電量遞減,單位電量里程隨之遞增; 3. 當車輛加速度變化越劇烈,可行駛里程遞減。
最後,本研究提出兩種向駕駛者提供電池用電情況的情境。第一種情境是將預估之剩餘里程即時通知駕駛者,但為了避免預估之剩餘里程隨駕駛情況變化而上下振盪,可對預估里程取移動平均。第二種情境適用於駕駛者已有既定行程,依據旅程路徑及當時情況,可利用前述模型預測整趟旅程所需的耗電量。這兩種資訊應有助於駕駛者了解電動車狀況,並有助於緩解其焦慮。
zh_TW
dc.description.abstractWith the rise of global awareness in environmental protection and the gradually increasing oil prices, the automobile industry of electric vehicle (EV) is growing rapidly. Compare with conventional fuel vehicles, EVs are not only more environment-friendly but also more energy-efficient and therefore are gaining ever amount of attention in many countries. However, there are still a few obstacles to EVs that restrict the development of EVs in Taiwan currently. In general, EV drivers in Taiwan are more concerned about potential interruption caused by battery depletion, owing to sparsely distributed charging stations, long charging time, and limited mileage. In contrast to conventional vehicle drivers, EV drivers have “range anxiety” that they worry about the feasibility of reaching the destination. The objective of this study is to develop a model to predict the remaining range of an EV, hoping that the driver’s anxiety may be alleviated by such information.
The estimation models studied in this research include support vector regression (SVR), artificial neural network (ANN), recurrent neural network (RNN), and long short-term memory (LSTM). The input data, selected based on the physical model of the vehicle, comprises state of charge (SOC), speed, acceleration, the slope of the road, wind speed, light, weather condition, the setting of the auxiliary system, etc. The output of the model is the energy consumption in a time step, which can be used to calculate the unit energy mileage and further to estimate the remaining driving range at current SOC.
The models were trained using the data collected from five LUXGEN S3 EVs in the summer. It is found that the two-time-step LSTM has the best performance, followed by the single-time-step LSTM, the two-time step RNN, the single-time step RNN, ANN, and SVR comes last. The mean absolute percentage errors of these models are 12.3%, 15.7%, 27.9%, 31.3%, 35.7%, and 41.4%, respectively. It is seen that the two-time-step LSTM is most feasible for the prediction of specific energy consumption.
Parametric analysis was conducted on the two-time-step LSTM model, and two findings were drawn: 1. the total mileage increases with the vehicle speed within the speed range of 20 to 100 km/h; 2. the unit energy mileage increases as the value of SOC decreases; 3. The total mileage increases as the acceleration changes drastically.
Two scenarios were proposed as to how the battery condition is presented to the driver. The first scenario is to estimate the real-time remaining range then present it to the driver. Taking a moving average may help smooth out the short-term fluctuation of the estimated range. The other scenario applies when there is a route plan. The route and traffic conditions can be used to predict the energy consumption of the whole trip. Both types of information should be able to help the driver better grasp the vehicle condition and relieve anxiety as driving an electric vehicle.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:20:36Z (GMT). No. of bitstreams: 1
U0001-1408202012241600.pdf: 2363418 bytes, checksum: bea41a2954e846cb18c41bfd278dbd9a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要……………………………………………………………………………………... i
Abstract…………………………………………………………………………………iii
Table of Contents vi
List of Figures …………………………………………………………………………..ix
List of Tables…………………………………………………………………………..xiii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Literature Review 3
1.2.1 Overview of State of Charge Estimation 3
1.2.2 Physical Model and Consumption Model of Electric Vehicle 7
1.2.3 Effect of Environmental Condition and Auxiliary Load 10
1.3 Research Scope and Objectives 12
Chapter 2 Methods 14
2.1 Energy Consumption Model 14
2.1.1 Power Derived from Physical Model 15
2.1.2 Auxiliary Loads 18
2.1.3 Input Form and Variables 19
2.2 Estimation Process and Establishment 21
2.3 Machine Learning Methods 24
2.4 Applications of Remaining Range Estimation 30
Chapter 3 Datasets 33
3.1 Data Description 33
3.1.1 Feature Selection 34
3.1.2 Data Description and Visualization 36
3.2 Data Preprocessing 41
3.2.1 Data Cleaning 42
3.2.2 Data Preprocessing 43
3.3 Prediction Performance Evaluation 48
3.3.1 MSE and MAPE 48
3.3.2 R-square 49
Chapter 4 Result and Discussion 50
4.1 Range Estimation Model 50
4.1.1 Model Performance of Different Machine Learning Methods 50
4.2 Parametric Analysis 77
4.3 Applications of Estimation Model 83
Chapter 5 Conclusion and Future Work 88
References…………………………………………………………………………….. 91
dc.language.isoen
dc.title以實車數據建構電動車剩餘里程之深度學習預測模型zh_TW
dc.titleDeep Learning for Remaining Range Estimation of Electric Vehicles Based on Driving Dataen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭榮和(Jung-Ho Chen),姜嘉瑞(Chia-Jui Chiang)
dc.subject.keyword電動車剩餘里程,單位電量里程,電動車耗能,SOC,RNN,LSTM,ANN,SVR,zh_TW
dc.subject.keywordEV,remaining range estimation,unit energy mileage,energy consumption,SOC,recurrent neural network,long short-term memory,artificial neural network,support vector regression,en
dc.relation.page94
dc.identifier.doi10.6342/NTU202003395
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-1408202012241600.pdf
  目前未授權公開取用
2.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved