Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59273
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor翁昭旼
dc.contributor.authorAn-Pang Changen
dc.contributor.author張安邦zh_TW
dc.date.accessioned2021-06-16T09:19:17Z-
dc.date.available2017-07-07
dc.date.copyright2017-07-07
dc.date.issued2017
dc.date.submitted2017-07-05
dc.identifier.citation[1] Paul S Addison, The Illustrated Wavelet Transform Handbook.
[2] P. Duilleux, An implementation of the algorithme à trous to compute the wavelet transform, in Wavelets: Time-Frequency Methods and Phase Space.
[3] Mladen Victor Wickerhauser, Adapted Wavelet Analysis From Theory to Software.
[4] 廖敏治,灰色理論的GM(1,1)模型在時間數列結構轉折之研究,全球商業經營管理學報第五期,頁9-17。
[5] 羅傑瀛、林彥宏、王正賢,應用灰色理論於時間序列轉折點之分析與預測,大葉學報第十一卷第二期(91),頁115-127。
[6] 陳雪平、潘長緣、朱文佳、張應山,金融時間序列的轉折點分析。
[7] PyWavelets – Wavelet Transform in Python.
http://pywavelets.readthedocs.io/en/latest/index.html
[8] Magnus Borga(1998), Learning Multidimensional Signal Processing.
[9] Mohammed Saeed(2007), Temporal Pattern Recognition in Multiparameter ICU Data.
[10] Michael Imhoff, MD, PhD*, and Silvia Kuhls, Dipl.-Stat.†, Alarm Algorithms in Critical Care Monitoring.
[11] Michael J Richards, Marion B Robertson, Jonathan G A Dartnell, Margarida M Duarte, Nicholas R Jones, Dale A Kerr, Lyn-Li Lim, Peter D Ritchie, Graham J Stanton and Simone E Taylor, “Impact of a web-based antimicrobial approval system on broad-spectrum cephalosporin use at a teaching hospital”.
[12] Christopher P. Bonafide, MD, MSCE; A. Russell Localio, PhD, MPH; Kathryn E. Roberts, RN, MSN; Vinay M. Nadkarni, MD, MS; Christine M. Weirich, MPH; Ron Keren, MD, MPH, “Impact of Rapid Response System Implementation on Critical Deterioration Events in Children”.
[13] Amber M. Sawyer, PharmD; Eli N. Deal, PharmD; Andrew J. Labelle, MD; Chad Witt, MD; Steven W. Thiel, MD; Kevin Heard, BS; Richard M. Reichley, RPh; Scott T. Micek, PharmD; Marin H. Kollef, MD, “Implementation of a real-time computerized sepsis alert in nonintensive care unit patients”.
[14] X Liu S Swift A Tucker G Cheng and G Loizou, “Modelling Multivariate Time Series”.
[15] Fabio Barili, Nicoletta Barzaghi, Faisal H. Cheema, Antonio Capo, Jeffrey Jiang, Enrico Ardemagni, Michael Argenziano, Claudio Grossi, “An original model to predict Intensive Care Unit length-of stay after cardiac surgery in a competing risk framework”.
[16] MULTIVARIATE TIME SERIES, LINEAR SYSTEMS AND KALMAN FILTERING
[17] J.T. Mc Clave a & R.G. Marks, “Predicting hospital census using time series regression methods”.
[18] Mustafa Gokce Baydogan · George Runger, “Learning a symbolic representation for multivariatetime series classification”.
[19] Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth, and Gerhard Thonhauser, “Multivariate Time Series Classification by Combining Trend-Based and Value-Based Approximations”.
[20] Jack E. Zimmerman and Andrew A. Kramer, Outcome prediction in critical care- The acute physiology and evaluation models
[21] Zing-Chart Docs https://www.zingchart.com/
[22] Mathlab SWT Docs https://www.mathworks.com/help/wavelet/ref/swt.html?searchHighlight=swt&s_tid=doc_srchtitle
[23] A. Grinsted , J. C. Moore , and S. Jevrejeva, Application of the cross wavelet transform and wavelet coherence to geophysical time series
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59273-
dc.description.abstract全臺灣每年都有許多重症病患者於加護病房接受治療,但是偵測病患生理資訊的儀器時常會出現雜訊,當遇到緊急狀況時會影響醫護人員的判斷,本研究希望將加護病房的警示系統優化,讓醫護人員能夠更即時且精準的掌握病患的狀況。
為了建置此警示系統,本研究取得台灣北部醫院加護病房的真實資料,並且模擬即時狀態的生理資料序列,期望能即時或是一個時間區間內解析生理訊號來判斷是否為雜訊或是病患陷入異常狀態的訊號。
本研究嘗試尋找各種演算法與統計方法並組合各種結果來偵測訊號的漂移點,同時也利用相關係數來測試不同生理訊號間是否存在相關性,期望能透過已知數據來預測下一個時間區間內可能發生的狀況。
本研究最後的目標是從現有的病患資料中尋找各生理訊號是否存在相關性,並且當發生異常狀況時,能夠排除掉雜訊提供醫護人員更準確的警示資訊。
zh_TW
dc.description.abstractThere are so many critically ill patients accept treatments in the Intensive Care Unit, but the noises are often appeared in the physiological signals monitoring which detect patients. And the judgements of the medical personnel doctors and nurses will be influenced in the emergency. This study respects that through the optimization of the warning systems in the Intensive Care Unit helps medical personnel doctors and nurses can handle the patients immediate and much more precise.
In order to build up this warning system, this study uses the real data in the Intensive Care Unit of the hospitals the north Taiwan, and simulates the physiological signals data of the patients. And hope this system can immediate or in the time zone to analysis the physiological signals whether is just the noise or occurred patients suffers in the abnormal conditions.
This study try to find many algorithms and statistical methods to combine the results, and to detect the shift points of the signals. In the meanwhile, this study also uses the correlation coefficients to detect whether the relatives are existed between different physiological signals, and hope through the data we have to prediction what happens in the next time zone.
The goal of this study is to check whether there are relatives in many physiological signals of the patients, and when the signals appear abnormal conditions, the warning system will get rid of the noises and help medical personnel doctors and nurses to get much more correct warning informations.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:19:17Z (GMT). No. of bitstreams: 1
ntu-106-R02548036-1.pdf: 7658553 bytes, checksum: ac2b1b1f680e5a1ed1ee5186d01104d8 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 i
Abstract ii
目 錄  iv
圖目錄 vi
表目錄  vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 1
1.3 研究流程 2
第二章 相關研究與材料 3
2.1 相關研究 3
2.1.1 時間序列相關文獻探討 3
2.1.2 訊號分析相關研究 5
2.2 研究材料 7
第三章 系統設計 8
3.1 系統環境 8
3.2 系統架構 9
3.3 即時時間序列與視覺化 10
3.4 系統分析語言 11
3.5 NoSQL資料庫 12
3.5.1 MongoDB 12
第四章 研究方法 13
4.1 相關係數 13
4.2 標準差 14
4.3 小波轉換 Wavelet Transform 15
4.3.1 穩定小波轉換 Stationary Wavelet Transform 16
4.3.2 小波係數臨界法 Wavelet coefficients thresholding 21
第五章 實驗結果與討論 22
5.1 實驗過程與資料呈現 22
5.1.1 序列位移尋找相關性 22
5.1.2 序列漂移點判斷 24
5.2 案例分析 25
5.3 實驗結果 29
5.4 討論 31
第六章 結論與展望 32
6.1 結論 32
6.2 展望 33
參考文獻 34
dc.language.isozh-TW
dc.subject加護病房zh_TW
dc.subject小波轉換zh_TW
dc.subject警示系統zh_TW
dc.subject相關係數zh_TW
dc.subjectwarning systemen
dc.subjectICUen
dc.subjectCorrelationen
dc.subjectWaveleten
dc.title利用小波轉換於血壓及脈博訊號之異常偵測與分析zh_TW
dc.titleWavelet transform in warning signal detection and analysis of blood pressure and pulse signalen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳中明,蔣以仁
dc.subject.keyword小波轉換,警示系統,相關係數,加護病房,zh_TW
dc.subject.keywordWavelet,warning system,Correlation,ICU,en
dc.relation.page35
dc.identifier.doi10.6342/NTU201700279
dc.rights.note有償授權
dc.date.accepted2017-07-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
7.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved