Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59272
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉(Shang-Lien Lo)
dc.contributor.authorTzu-Yi Fuen
dc.contributor.author傅子懿zh_TW
dc.date.accessioned2021-06-16T09:19:15Z-
dc.date.available2020-08-21
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-15
dc.identifier.citation1. Environmental Standards for Protecting Human Health. River monitoring, EPA, Taipei, R.O.C. (2017)
2. Pollutants and Control Values. Groundwater Monitoring, EPA, Taipei, R.O.C. (2017)
3. Standards of Permissible Exposure Limits at Job Site. Ministry of Labor, Taipei, R.O.C. (2018)
4. Lin Y., Using activate-reduction method degrades PFOA/PFOS in groundwater. EPA, Taipei, R.O.C. (2019)
5. Alcántara-Garduño M.E., Okuda T., Nishijima W., Okada M., Ozonation of trichloroethylene in acetic acid solution with soluble and solid humic acid. Journal of Hazardous Materials. Vol. 160 (2008) 662-667.
6. Anandan S., Sathish Kumar P., Pugazhenthiran N., Madhavan J., Maruthamuthu P., Effect of loaded silver nanoparticles on TiO2 for photocatalytic degradation of Acid Red 88. Solar Energy Materials and Solar Cells. Vol. 92, Issue 8 (2008) 929-937.
7. Bruell C.J., Segall B.A., Walsh M.T., Electroosomotic removal of gasoline hydrocarbons and TCE from clay. Journal of Environmental Engineering. Vol. 118, Issue 1 (1992) 68-83.
8. Cong J., Wen G., Huang T., Deng L., Ma J., Study on enhanced ozonation degradation of para-chlorobenzoic acid by peroxymonosulfate in aqueous solution. Chem. Eng. J. Vol. 264 (2015) 399-403.
9. Duan X., Sun H., Kang J., Wang Y., Indrawirawan S., Wang S., Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. ACS Catal. Vol. 5 (2015) 4629-4636.
10. Fang G., Dionysiou D.D., Al-Abed S.R., Zhou D., Superoxide radical driving the activation of persulfate by magnetite nanoparticles: implications for the degradation of PCBs. Applied Catalysis B: Environmental. Vol. 129 (2013) 325-332.
11. Gao F., Liu F., Chen H., Progress on remediation of trichloroethylene (TCE) in soil and groundwater contaminated source area (Written in Chinese). Advances in Earth Science. Vol. 23, Issue 8 (2008) 821-829.
12. Gao N., Li F., Yuasa A., Le L., Zhou Y., Research progress in the removal of trichloroethylene from water (Written in Chinese). Industrial Water Treatment. Vol. 23, Issue 9 (2003) 14-17.
13. Ghanbari F., Moradi M., Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. Vol. 310 (2017) 41-62.
14. Harald J., Stefan L., Thomas L., Sylvia J., Sven G., Peroxo Compounds. Inorganic. Ullmann's Encyclopedia of Industrial Chemistry. Wiley‐VCH Verlag GmbH Co. KGaA (2007) 293-324.
15. Jaafarzadeh N., Ghanbari F., Moradi M., Photo-electro-oxidation assisted peroxymonosulfate for decolorization of acid brown 14 from aqueous solution. Korean J. Chem. Eng. Vol. 32 (2015) 458-464.
16. Kim H., Hong H., Jung J., Kim S., Yang J., Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. Journal of Hazardous Materials. Vol. 176, Issues 1-3 (2010) 1038-1043.
17. Kim J., Gaseous TCE and PCE removal by an activated carbon biofilter. Bioprocess Engineering. Vol. 16, Issue 6 (1997) 331-337.
18. Li G., Ma H., An W., Gas phase photocatalytic oxidation of trichloroethylene on nanoscale titanium dioxide (Written in Chinese). Chinese Journal of Catalysis. Vol. 21, Issue 4 (2000) 350-354.
19. Lin C., Su Y., Yu C., Wu W., Effects of FeO content on high-temperature properties in FeO-CaOSiO2-Al2O3-MgO system (Written in Chinese). J. Chinese Inst. Mining and Metallurgical Eng. Vol. 62, No. 4 (2018) 84-96.
20. Lin H., Li Y., Mao X., Zhang H., Electro-enhanced goethite activation of peroxydisulfate for the decolorization of Orange II at neutral pH: efficiency, stability and mechanism. J. Taiwan Inst. Chem. Eng. Vol. 65 (2016) 390-398.
21. Lin K., Zhang Z., α-Sulfur as a metal-free catalyst to activate peroxymonosulfate under visible light irradiation for decolorization. RSC Advances. Issue 18 (2016) 15027-15034.
22. Liang C., Su H., Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind. Eng. Chem. Vol. 48, No. 11 (2009) 5558-5562.
23. Liang C., Wang Z., Bruell C.J., Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere. Vol. 66 (2007) 106-113.
24. Loomer D.B., Tom A. Al, Banks V.J., Parker B.L., Mayer K.U., Manganese valence in oxides formed from in situ chemical oxidation of TCE by KMnO4. Environ. Sci. Technol. Vol. 44, Issue 15 (2010) 5934-5939.
25. Misra C., Gupta S.K., Hybrid reactor for priority pollutant-trichloroethylene removal. Water Research. Vol. 35, Issue 1 (2001) 160-166.
26. Oh W.D., Dong Z., Hu Z.T., Lim T.T., A novel quasi-cubic CuFe2O4–Fe2O3 catalyst prepared at low temperature for enhanced oxidation of bisphenol A via peroxymonosulfate activation. Journal of Materials Chemistry A. Issue 44 (2015) 22208-22217.
27. Qi C., Liu X., Ma J., Lin C., Li X., Zhang H., Activation of PMS by base: Implications for the degradation of organic pollutants. Chemosphere. Vol. 151 (2016) 280-288.
28. Qian Y., Yue F., Chu Y., Advances in environmental remediation technologies for trichloroethylene pollution (Written in Chinese). Environmental Chemistry. Vol. 31, No. 9 (2012) 1335-1343.
29. Sakulchaicharoen N., O'Carroll D.M., Herrera J.E., Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles. Journal of Contaminant Hydrology. Vol. 118, Issues 3-4 (2010) 117-127.
30. Stanisław W., Holger V. L., Klaudiusz G., Vinod V.T. P., Miroslav Č., Dionysios.D. D., Chemistry of persulfates in water and wastewater treatment: A review. Chemical Engineering Journal. Vol. 330 (2017) 44-62.
31. Teel A.L., Warberg C.R., Atkinson D.A., Watts R.J., Comparison of mineral and soluble iron Fenton's catalysts for the treatment of trichloroethylene. Water Research. Vol. 35, Issue 4 (2001) 977-984.
32. Tsitonaki A., Petri B., Crimi M., Mosbaek H., Siegrist R.L., Bjerg P.L., In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Critical Reviews in Environmental Science and Technology. Vol. 40 (2010) 55-91.
33. Uesugi et al., Decomposition of TCE by ozone hydrogen peroxide method (Written in Japanese). Lectures of Japan Society on Water Environment. Vol. 34 (2000) 295.
34. Wang J., Wang S., Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. Vol. 334 (2018) 1502-1517.
35. Wang Q., Wang B., Ma Y., Xing S., Enhanced superoxide radical production for ofloxacin removal via persulfate activation with Cu-Fe oxide. Chem. Eng. J. Vol. 354 (2018) 473-480.
36. Yamazaki S., Matsunaga S., Hori K., Photocatalytic degradation of trichloroethylene in water using TiO2 pellets. Water Research. Volume 35, Issue 4 (2001) 1022-1028.
37. Yang C., Yeh C., Enhanced nano-Fe3O4/S2O82− oxidation of trichloroethylene in a clayey soil by electrokinetics. Separation and Purification Technology. Vol. 79, Issue 2 (2011) 264-271.
38. Yang Y., Jiang J., Lu X., Ma J., Liu Y., Production of sulfate radical and hydroxyl radical by reaction of ozone with peroxymonosulfate: a novel advanced oxidation process. Environ. Sci. Technol. Vol. 49 (2015) 7330-7339.
39. Yang Y., Pignatello J.J., Ma J., Mitch W.A., Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs). Environ. Sci. Technol. Vol. 48, Issue 4 (2014) 2344-2351.
40. Yuan S., Liao P., Alshawabkeh A.N., Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater. Environ. Sci. Technol. Vol. 48 (2014) 656-663.
41. Zhang B., Zhang Y., Teng Y., Fan M., Sulfate radical and its application in decontamination technologies. Critical Reviews in Environmental Science and Technology. Vol. 45 (2015) 1756-1800.
42. Zhao D., Liao X., Yan X., Huling S.G., Chai T., Tao H., Effect and mechanism of PS activated by different methods for PAHs removal in soil. Journal of Hazardous Materials. Vol. 254-255 (2013) 228-235.
43. Zhong M., Preparation of CuO nanowires by simple thermal oxidation and their gassensing property. Nonferrous Metals Science and Engineering. Vol. 4, No. 4 (2013) 47-50.
44. Zhou Y., Jiang J., Gao Y., Ma J., Pang S., Li J., Lu X., Yuan L., Activation of PMS by benzoquinone: a novel nonradical oxidation process. Environ. Sci. Technol. Vol. 49 (2015) 12941-12950.
45. 顧曉清,馬小東,孫紅文,「 氧化鋅表面的 Fe(Ⅱ)對三氯乙烯的還原脫氯研究」, 生態環境,第 16 卷 04 期,1180-1183,中國南開大學(2007)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59272-
dc.description.abstract本文主要係探討使用新式複合材料:銅鐵氧化物催化劑以活化過硫酸鹽,產生自由基以去除水中三氯乙烯的成效。三氯乙烯是已被禁用的工業溶劑,曾造成多處地下水汙染。過硫酸是近年來常用的除汙工具,有強氧化能力,且平時化學性質穩定,不易造成危害。
本次研究首先製備催化劑材料和特定溶液,兩者混合後按時取樣,分析殘餘的三氯乙烯含量以評估去除效果。
對於催化劑材料,本文亦有成分和元素分析。催化劑含有氧化銅和氧化鐵,若以元素敘述,則有氧、銅和鐵,各約占總重 20%、40%和 40%。
根據實驗結果,增加催化劑用量和降低溶液 pH 值可提高三氯乙烯被去除比例,而調整三氯乙烯濃度對去除率無顯著影響。若採用過一硫酸鹽,配合添加催化劑,可使三氯乙烯於 10 分鐘內完全去除。因此催化劑搭配過硫酸去除三氯乙烯絕對可行,有進一步研討之潛力。
本實驗也有探討主要的反應自由基。過硫酸被催化後,可能生成氫氧、硫酸和超氧自由基。根據自由基消除實驗結果,添加甲醇或異丁醇,皆顯著減少三氯乙烯的去除比率;若添加苯醌,於 60 分鐘內之去除率降低,反之則上升。因異丁醇易消除氫氧自由基、甲醇易結合硫酸自由基、苯醌可移除超氧自由基,而氫氧自由基較少自過硫酸直接產出,故主要反應自由基依序為硫酸、氫氧、超氧自由基。
zh_TW
dc.description.abstractThe project is mainly talking about the results of using novel composite material: Copper-Iron oxide catalyst to activate persulfate, producing radical to remove TCE (Trichloroethylene) in water. TCE is banned industrial solvent, making many places of underground water polluted. Persulfate is frequently used chemical to degrade contaminant in recent years, possessing strong oxidizing ability and being stable with no harm in usual.
To accomplish the research, we need to prepare catalyst and essential solution first, then sampling after mixing to analyze remaining content of TCE. The result is to evaluate extent of degradation. Lower remaining content, better removing effect. There are some analysis of component and element for catalyst. Referring to the analysis, catalyst consists of Copper (II) Oxide and Iron (III) Oxide, or includes Oxygen, Copper and Iron in elements, containing total weight of about 20%, 40% and 40%, respectively.
According to results of experiments, increasing dose of catalyst and descending pH of solution would elevate removal percentage of TCE, however, there is no significant difference in changing initial TCE concentration. If replace PMS (Peroxomonosulfate) of PDS (Peroxydisulfate), TCE can removed in 10 minutes with catalyst added. Thus, degrading TCE by catalyst and persulfate is favorable.
The project also discussed mainly reacting radical. Persulfate can produce hydroxyl, sulfate and superoxide radical after activated. Referring to radical scavenging test, adding methanol or TBA (tert-butanol) can both largely lower removal percentage of TCE, yet dosing benzoquinone would slightly decrease removal portion of TCE before 60 minutes and increase otherwise. TBA is active with hydroxyl radical, methanol is favorable with sulfate radical and benzoquinone is active with superoxide radical. Hydroxyl radical seldom produced from persulfate directly, thus, reactive radical in sequence with importance is sulfate, hydroxyl and superoxide, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:19:15Z (GMT). No. of bitstreams: 1
U0001-1408202014032000.pdf: 1836498 bytes, checksum: a820651798f266760845fe2f2832521f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsVerification of the thesis defense committee……………………………….#
Acknowledgements……………………………………...………………….i
Abstract in Chinese……………………………………………………...…ii
ABSTRACT……………………………………………………………….iii
CONTENTS………………………………………………………...……...v
LIST OF FIGURES………………………………………………...……viii
LIST OF TABLES……………………………………….…………….…..xi
Chapter 1 Introduction…………………………………………...…...1
1.1 Motivation..………………………………………………..…..1
1.2 Objectives………………………………………………….….1
Chapter 2 Review…………………………………………………..….3
2.1 Degradation of trichloroethylene………………………………3
2.1.1 Physical remediation………………………...……………4
2.1.2 Biological methods.………………………………...……..4
2.1.3 Chemical oxidation………………………………………..6
2.1.4 Photon catalysis…….…………………………...………...8
2.1.5 Chemical reduction……………………………………..…8
2.1.6 Summary……………………………………………...…..9
2.2 Activation of persulfate………………..…………………...….12
2.2.1 Homogeneous activation………………..…....................14
2.2.2 Heterogeneous activation with catalysts………………...15
2.2.3 Other various methods…………………………………..18
2.2.4 Summary…………………………………………...……24
Chapter 3 Materials and Methods…………………….………….....25
3.1 Research framework………………………………………..….25
3.2 Preparation of materials…………………………………..…....26
3.3 Experiment of TCE removal…..…………………………..……28
3.4 Analysis of catalyst and solution…………………………..…...30
3.4.1 Catalyst description………………..………………...…..30
3.4.2 Measurement of TCE in solution…………………..……32
Chapter 4 Results and Discussions…………………………...……..34
4.1 The catalyst……………………………………………………...34
4.1.1 The components of catalyst…………………………...…34
4.1.2 XRD and TEM/EDS for composition of catalyst………..36
4.2 Degradation of trichloroethylene in water………………………39
4.3 Radical scavenging test…………………………...…………….45
4.4 The main reactant, product and by-product……………………..48
Chapter 5 Conclusions and Recommendations……………….……49
5.1 Conclusions………………………………………………….…49
5.2 Recommendations………………………………………..…….50
REFERENCE…………………………………………….……………….51
APPENDIX…………………………………………………...…………..57
dc.language.isoen
dc.title以銅鐵氧化物催化過硫酸移除水中三氯乙烯之研究zh_TW
dc.titleCatalyzing Persulfate for the Removal of Trichloroethylene from Water Using Cu-Fe Oxideen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.coadvisor林逸彬(Yi-Pin Lin)
dc.contributor.oralexamcommittee林進榮(Chin-Jung Lin)
dc.subject.keyword銅鐵氧化物,過硫酸,三氯乙烯,自由基,zh_TW
dc.subject.keywordCopper-Iron oxide composite,persulfate,TCE,radical,en
dc.relation.page64
dc.identifier.doi10.6342/NTU202003409
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1408202014032000.pdf
  目前未授權公開取用
1.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved