請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59266完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 游佳欣(Jiashing Yu) | |
| dc.contributor.author | Yu-Wei Tai | en |
| dc.contributor.author | 戴淯瑋 | zh_TW |
| dc.date.accessioned | 2021-06-16T09:19:07Z | - |
| dc.date.available | 2017-07-13 | |
| dc.date.copyright | 2017-07-13 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-06 | |
| dc.identifier.citation | 1. Liu, X., et al., Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano, 2013. 7(7): p. 6244-57.
2. Duan, X. and Y. Li, Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small, 2013. 9(9-10): p. 1521-32. 3. Albanese, A., P.S. Tang, and W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng, 2012. 14: p. 1-16. 4. Dinarvand, R., et al., Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. Int J Nanomedicine, 2011. 6: p. 877-95. 5. Zhang, S., et al., Size-dependent endocytosis of nanoparticles. Adv Mater, 2009. 21: p. 419-424. 6. Liu, T.M., et al., One-step shell polymerization of inorganic nanoparticles and their applications in SERS/nonlinear optical imaging, drug delivery, and catalysis. Sci Rep, 2014. 4: p. 5593. 7. Kojic, N., et al., Focal infection treatment using laser-mediated heating of injectable silk hydrogels with gold nanoparticles. Adv Funct Mater, 2012. 22(18): p. 3793-3798. 8. Wang, C., et al., Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing. Adv Funct Mater, 2006. 16(13): p. 1673-1678. 9. Zhao, X.-q., et al., Multifunctional Au@IPN-pNIPAAm nanogels for cancer cell imaging and combined chemo-photothermal treatment. J Mater Chem, 2011. 21(20): p. 7240-7247. 10. Barbosa, S., et al., Targeted combinatorial therapy using gold nanostars as theranostic platforms. J Phys Chem C, 2014. 118(45): p. 26313-26323. 11. Yu, J., et al., Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells. ACS Appl Mater Interfaces, 2015. 7(1): p. 432-41. 12. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2007. 2(12): p. 751-60. 13. Lewin, M., et al., Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol, 2000. 18(4): p. 410-4. 14. Jaiswal, J.K., et al., Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol, 2003. 21(1): p. 47-51. 15. Kanazawa, T., et al., Enhancement of gene transfection into human dendritic cells using cationic PLGA nanospheres with a synthesized nuclear localization signal. Int J Pharm, 2009. 379(1): p. 187-95. 16. Link, S. and M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B, 1999. 103(40): p. 8410-8426. 17. Jain, P.K., et al., Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics, 2007. 2(3): p. 107-118. 18. Jain, P.K., I.H. El-Sayed, and M.A. El-Sayed, Au nanoparticles target cancer. Nano Today, 2007. 2(1): p. 18-29. 19. El-Sayed, M.A., Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res, 2001. 34(4): p. 257-264. 20. Kelly, K.L., et al., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B, 2003. 107(3): p. 668-677. 21. Lee, K.-S. and M.A. El-Sayed, Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B, 2005. 109(43): p. 20331-20338. 22. Zhang, C., et al., Surface plasmon resonance in bimetallic core–shell nanoparticles. J Phys Chem C, 2015. 119(29): p. 16836-16845. 23. Jaque, D., et al., Nanoparticles for photothermal therapies. Nanoscale, 2014. 6(16): p. 9494-9530. 24. Wang, Z., et al., The role of mitochondria-derived reactive oxygen species in hyperthermia-induced platelet apoptosis. PLoS ONE, 2013. 8(9): p. e75044. 25. Weissleder, R., A clearer vision for in vivo imaging. Nat Biotechnol, 2001. 19(4): p. 316-317. 26. Terentyuk, G., et al., Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res, 2014. 7(3): p. 325-337. 27. Shanmugam, V., S. Selvakumar, and C.S. Yeh, Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev, 2014. 43(17): p. 6254-87. 28. Lv, R., et al., An imaging-guided platform for synergistic photodynamic/photothermal/chemo-therapy with pH/temperature-responsive drug release. Biomaterials, 2015. 63: p. 115-27. 29. Jang, B., et al., Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano, 2011. 5(2): p. 1086-94. 30. Gormley, A.J., et al., Guided delivery of polymer therapeutics using plasmonic photothermal therapy. Nano Today, 2012. 7(3): p. 158-167. 31. Youngil, L., et al., Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics. Nanotechnology, 2008. 19(41): p. 415604. 32. Liu, X., W. Cai, and H. Bi, Optical absorption of copper nanoparticles dispersed within pores of monolithic mesoporous silica. J Mater Res, 2002. 17(05): p. 1125-1128. 33. Bhadra, S., A. Saha, and B.C. Ranu, One-pot copper nanoparticle-catalyzed synthesis of S-aryl- and S-vinyl dithiocarbamates in water: high diastereoselectivity achieved for vinyl dithiocarbamates. Green Chem, 2008. 10(11): p. 1224-1230. 34. Pacioni, N.L., et al., Synthesis of copper nanoparticles mediated by photogenerated free radicals: catalytic role of chloride anions. Photochem Photobiol Sci, 2010. 9(6): p. 766-74. 35. Scaiano, J.C., K.G. Stamplecoskie, and G.L. Hallett-Tapley, Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chem Commun, 2012. 48(40): p. 4798-4808. 36. Pan, Y., et al., Size-dependent cytotoxicity of gold nanoparticles. Small, 2007. 3(11): p. 1941-9. 37. Wang, J.J., B.J. Sanderson, and H. Wang, Cytotoxicity and genotoxicity of ultrafine crystalline SiO2 particulate in cultured human lymphoblastoid cells. Environ Mol Mutagen, 2007. 48(2): p. 151-7. 38. Ankamwar, B., et al., Biocompatibility of Fe(3)O(4) nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology, 2010. 21(7): p. 75102. 39. Shen, C., et al., Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci, 2013. 136(1): p. 120-30. 40. Jin, C.Y., et al., Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chem Res Toxicol, 2008. 21(9): p. 1871-7. 41. Pujari-Palmer, S., et al., In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response. Biomaterials, 2016. 90: p. 1-11. 42. Jose, G.P., et al., Singlet oxygen mediated DNA degradation by copper nanoparticles: potential towards cytotoxic effect on cancer cells. J Nanobiotechnology, 2011. 9(1): p. 1-8. 43. Midander, K., et al., Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small, 2009. 5(3): p. 389-99. 44. Rushton, E.K., et al., Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A, 2010. 73(5): p. 445-61. 45. Schrand, A.M., et al., Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2010. 2(5): p. 544-68. 46. Fu, P.P., et al., Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal, 2014. 22(1): p. 64-75. 47. Dhas, N.A., C.P. Raj, and A. Gedanken, Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater, 1998. 10(5): p. 1446-1452. 48. Huang, H.H., et al., Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir, 1997. 13(2): p. 172-175. 49. Chen, Z., et al., Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett, 2006. 163(2): p. 109-20. 50. Lanone, S., et al., Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol, 2009. 6: p. 14-14. 51. Benetti, F., et al., Effects of metal(loid)-based nanomaterials on essential element homeostasis: the central role of nanometallomics for nanotoxicology. Metallomics, 2014. 6(4): p. 729-47. 52. Burrows, C.J. and J.G. Muller, Oxidative nucleobase modifications leading to strand scission. Chem Rev, 1998. 98(3): p. 1109-1152. 53. Jomova, K., S. Baros, and M. Valko, Redox active metal-induced oxidative stress in biological systems. Transit Metal Chem, 2012. 37(2): p. 127-134. 54. Semisch, A., et al., Cytotoxicity and genotoxicity of nano - and microparticulate copper oxide: role of solubility and intracellular bioavailability. Part Fibre Toxicol, 2014. 11(1): p. 1-16. 55. Manke, A., L. Wang, and Y. Rojanasakul, Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. Biomed Res Int, 2013. 2013: p. 15. 56. Mu, Q., et al., Chemical basis of interactions between engineered nanoparticles and biological systems. Chem Rev, 2014. 114(15): p. 7740-7781. 57. Dickinson, B.C. and C.J. Chang, Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat Chem Biol, 2011. 7(8): p. 504-11. 58. Cho, K.S., et al., Reactive oxygen species-induced apoptosis and necrosis in bovine corneal endothelial cells. Invest Ophthalmol Vis Sci, 1999. 40(5): p. 911-9. 59. Adams, R.M., Medicolegal aspects of occupational skin diseases. Dermatol Clin, 1988. 6(1): p. 121-9. 60. Yoo, D., et al., Double-effector nanoparticles: a synergistic approach to apoptotic hyperthermia. Angew Chem Int Ed Engl, 2012. 51(50): p. 12482-5. 61. Kanduc, D., et al., Cell death: apoptosis versus necrosis (review). Int J Oncol, 2002. 21(1): p. 165-70. 62. Goodlett, C.R. and K.H. Horn, Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Res Health, 2001. 25(3): p. 175-184. 63. Ziegler, U. and P. Groscurth, Morphological features of cell death. Physiology, 2004. 19(3): p. 124-128. 64. Caicedo, M., et al., Analysis of metal ion-induced DNA damage, apoptosis, and necrosis in human (Jurkat) T-cells demonstrates Ni2+ and V3+ are more toxic than other metals: Al3+, Be2+, Co2+, Cr3+, Cu2+, Fe3+, Mo5+, Nb5+, Zr2+. J Biomed Mater Res A, 2008. 86(4): p. 905-13. 65. Cheng, G. and A.R. Hight Walker, Transmission electron microscopy characterization of colloidal copper nanoparticles and their chemical reactivity. Anal Bioanal Chem, 2010. 396(3): p. 1057-69. 66. Palkar, V.R., et al., Size-induced structural transitions in the Cu-O and Ce-O systems. Phys Rev B, 1996. 53(5): p. 2167-2170. 67. Rice, K.P., A.S. Paterson, and M.P. Stoykovich, Nanoscale Kirkendall effect and oxidation kinetics in copper nanocrystals characterized by real-time, in situ optical spectroscopy. Part Part Syst Charact, 2015. 32(3): p. 373-380. 68. El Mel, A.-A., R. Nakamura, and C. Bittencourt, The Kirkendall effect and nanoscience: hollow nanospheres and nanotubes. Beilstein J Nanotechnol, 2015. 6(1): p. 1348-1361. 69. Susman, M.D., A. Vaskevich, and I. Rubinstein, A general kinetic-optical model for solid-state reactions involving the nano Kirkendall effect. The case of copper nanoparticle oxidation. J Phys Chem C, 2016. 70. Anderson, B.D. and J.B. Tracy, Nanoparticle conversion chemistry: Kirkendall effect, galvanic exchange, and anion exchange. Nanoscale, 2014. 6(21): p. 12195-12216. 71. Yin, Y., et al., Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science, 2004. 304(5671): p. 711-4. 72. Ram, S. and C. Mitra, Formation of stable Cu2O nanocrystals in a new orthorhombic crystal structure. Mater Sci Eng A, 2001. 304–306: p. 805-809. 73. Musa, A.O., T. Akomolafe, and M.J. Carter, Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol Energ Mat Sol Cells, 1998. 51(3–4): p. 305-316. 74. Huang, C.C., et al., Surfactant-assisted hollowing of Cu nanoparticles involving halide-induced corrosion-oxidation processes. Chemistry, 2006. 12(14): p. 3805-10. 75. Schroter, M.K., et al., Redox chemistry of Cu colloids probed by adsorbed CO: an in situ attenuated total reflection Fourier transform infrared study. Langmuir, 2004. 20(22): p. 9453-5. 76. Li, J., et al., Ag@ Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts. ACS Catalysis, 2012. 3(1): p. 47-51. 77. Liu, D.-Y., et al., Distinctive enhanced and tunable plasmon resonant absorption from controllable Au@Cu2O nanoparticles: experimental and theoretical modeling. J Phys Chem C, 2012. 116(7): p. 4477-4483. 78. Zhang, L., D.A. Blom, and H. Wang, Au–Cu2O core–shell nanoparticles: a hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem Mater, 2011. 23(20): p. 4587-4598. 79. Zhang, L., et al., Geometry control and optical tunability of metal–cuprous oxide core–shell nanoparticles. ACS Nano, 2012. 6(4): p. 3514-3527. 80. Shi, M., et al., Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano, 2012. 6(3): p. 2157-2164. 81. Kim, I., et al., Synthesis of oxidation-resistant core-shell copper nanoparticles. RSC Adv, 2013. 3(35): p. 15169-15177. 82. Wang, D., Z.-C. Li, and L. Chen, Templated synthesis of single-walled carbon nanotube and metal nanoparticle assemblies in solution. J Am Chem Soc, 2006. 128(47): p. 15078-15079. 83. Huang, C.-C., et al., Size-control synthesis of structure deficient truncated octahedral Fe3-[small delta]O4 nanoparticles: high magnetization magnetites as effective hepatic contrast agents. J Mater Chem, 2011. 21(20): p. 7472-7479. 84. Larson, N., et al., Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin. Int J Pharm, 2011. 420(1): p. 111-117. 85. Greish, K., et al., SMA-doxorubicin, a new polymeric micellar drug for effective targeting to solid tumours. J Control Release, 2004. 97(2): p. 219-230. 86. Huang, C.C. and T.M. Liu, Controlled Au-polymer nanostructures for multiphoton imaging, prodrug delivery, and chemo-photothermal therapy platforms. ACS Appl Mater Interfaces, 2015. 7(45): p. 25259-69. 87. Soares, D.M., et al., Copper ion reduction catalyzed by chloride ions. J Electroanal Chem, 2002. 532(1–2): p. 353-358. 88. Meena, S.K., et al., The role of halide ions in the anisotropic growth of gold nanoparticles: a microscopic, atomistic perspective. Phys Chem Chem Phys, 2016. 89. Millstone, J.E., et al., Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett, 2008. 8(8): p. 2526-2529. 90. Ha, T.H., H.-J. Koo, and B.H. Chung, Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J Phys Chem C, 2007. 111(3): p. 1123-1130. 91. Langille, M.R., et al., Defining rules for the shape evolution of gold nanoparticles. J Am Chem Soc, 2012. 134(35): p. 14542-14554. 92. Tagad, C.K., et al., A sensitive hydrogen peroxide optical sensor based on polysaccharide stabilized silver nanoparticles. RSC Adv, 2013. 3(45): p. 22940-22943. 93. Han, D.M., Q.M. Zhang, and M.J. Serpe, Poly (N-isopropylacryl-amide)-co-(acrylic acid) microgel/Ag nanoparticle hybrids for the colorimetric sensing of H2O2. Nanoscale, 2015. 7(6): p. 2784-9. 94. Pozun, Z.D., et al., A systematic investigation of p-nitrophenol reduction by bimetallic dendrimer encapsulated nanoparticles. J Phys Chem C, 2013. 117(15): p. 7598-7604. 95. Lin, C., et al., Size effect of gold nanoparticles in catalytic reduction of p-nitrophenol with NaBH4. Molecules, 2013. 18(10): p. 12609. 96. Kraljić, I. and S.E. Mohsni, A new method for the detection of singlet oxygen in aqueous solutions. Photochem Photobiol, 1978. 28(4-5): p. 577-581. 97. Pasparakis, G., Light-induced generation of singlet oxygen by naked gold nanoparticles and its implications to cancer cell phototherapy. Small, 2013. 9(24): p. 4130-4. 98. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983. 65(1-2): p. 55-63. 99. Gerlier, D. and N. Thomasset, Use of MTT colorimetric assay to measure cell activation. J Immunol Methods, 1986. 94(1-2): p. 57-63. 100. Curtin, J.F., M. Donovan, and T.G. Cotter, Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods, 2002. 265(1-2): p. 49-72. 101. Dikalov, S., K.K. Griendling, and D.G. Harrison, Measurement of reactive oxygen species in cardiovascular studies. Hypertension, 2007. 49(4): p. 717-727. 102. Shi, J., et al., PEGylated fullerene/iron oxide nanocomposites for photodynamic therapy, targeted drug delivery and MR imaging. Biomaterials, 2013. 34(37): p. 9666-77. 103. Lu, Y., et al., Methylene blue-mediated photodynamic therapy induces mitochondria-dependent apoptosis in HeLa cell. J Cell Biochem, 2008. 105(6): p. 1451-60. 104. Biosciences, B., Detection of apoptosis using the BD annexin V FITC assay on the BD FACSVerse™ system. 2011. 105. Hedberg, J., et al., The importance of extracellular speciation and corrosion of copper nanoparticles on lung cell membrane integrity. Colloids Surf B Biointerfaces, 2016. 141: p. 291-300. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59266 | - |
| dc.description.abstract | 光熱治療是在癌症治療中一種結合奈米科技以及生醫工程的新技術。銅奈米粒子與其他金屬奈米粒子相同具有獨特的光學性質,在其吸收光譜中可以觀察到一個吸收峰值,顯示了其局部表面電漿共振(LSPR)的作用,代表了波長590奈米的光子能量可以轉移至奈米粒子上的自由電子,造成電場的震盪,而共振的能量隨後轉換成熱能,造成溫度的上升。此一現象可以透過標靶以及光激發的局部加熱效應用於殺死癌細胞。然而,由於銅奈米粒子的不穩定性,其並沒有作為光熱治療藥劑而廣泛使用,因為其會誘使的活性氧物質(ROS)會造成細胞毒性。若要將銅奈米粒子作為生醫方面的應用,此一缺陷是必須要被控制的。
在此一研究中,我們透過一步驟的水熱反應製造包有高分子殼層的銅奈米粒子(Cu@polymer NPs),而此奈米粒子的構成對反應中所存在的鹵素離子敏感。接著,我們發展出一個溫和的銅離子氧化程序,用以生成一個具有高分子表面包覆,具有金屬銅中心及氧化亞銅外殼的奈米複合物(Cu@Cu2O@polymer NPs)。透過紫外光─可見光光譜可以確定所製成的Cu@Cu2O@polymer NPs具有從紅光到近紅外光波長的吸收帶,表示其在具有較高組織穿透性、較適合於光誘導治療的近紅外光的激發下可以產生LSPR作用,而此奈米粒子在水溶液環境中展現了光學及物理的穩定性。此外,當細胞在有Cu@Cu2O@polymer NPs的環境中培養時,其促使的ROS生成及細胞毒性情況與Cu@polymer NPs相比較為減少,而此一因奈米粒子與細胞的相互作用導致的細胞死亡路徑也有在此實驗中研究。 最後,透過光的激發我們測試了奈米粒子的光熱效應,在紅光的照射下,我們可以由20至50 ppm的Cu@Cu2O@polymer NPs 及300至650 mW/cm2的雷射功率得到顯著的光子─熱量轉換,相較之下,純Cu@polymer NPs在紅光照射下得到較不顯著的光熱效應。在體外光熱治療實驗也顯示了與Cu@Cu2O@polymer NPs共同培養的細胞在經過紅光照射後活性顯著地降低,此一結果顯示了Cu@Cu2O@polymer NPs較Cu@polymer NPs.更為適合應用在光熱治療上。 | zh_TW |
| dc.description.abstract | Photothermal therapy (PTT) is a new technique combining nanotechnology and biomedical engineering for cancer treatment. As other metallic nanoparticles (NPs), copper nanoparticles (CuNPs) have unique optical characteristics. An adsorption peak of CuNPs was observed in adsorption spectra, indicating that CuNPs will exhibit localized surface plasmon resonance (LSPR) effect, which means energy of photon at a wavelength of 590 nm can be transferred to the free electron on NPs, leading the oscillation of electronic field. The energy of the resonance subsequently transfer to heat and cause a temperature elevation. This phenomenon can be used as a way to kill cancer cells by targeting and partial heating in tumor tissue with light stimulation. However, due to the instability, CuNPs were not widely used as a PTT agent because they may induce reactive oxygen species (ROS) generation and cause cytotoxicity. This drawback is needed to be controlled if we want to introduce CuNPs.to biomedical application.
In the work, we synthesized CuNPs with polymer shell via one-step hydrothermal reduction reaction. The formation of Cu@polymer NPs is sensitive to the presence of halide ions in the reaction. Next, we developed a smooth oxidation process of Cu@polymer NPs to fabricate polymer surface coating-Cu2O shell-Cu core nanocomposite. UV-visible spectra determined the as-prepared Cu@Cu2O@polymer NPs with absorption band covered from red to near infrared (NIR) wavelengths. It indicates that the LSPR effect of Cu@Cu2O@polymer NPs can be stimulated by NIR light, which has higher penetration to tissue and is more appropriate for light-induced therapy. Also, these nanoparticles exhibited optical and physical stability in the aqueous solution. Moreover, compared with Cu@polymer NPs, less ROS generation and cytotoxicity were induced while cells were incubated with Cu@Cu2O@polymer NPs. The cell death pathway attributed to NP-cell interaction was also studied. Finally, the photothermal effect was examined by light stimulation. As exposure to red light, an obvious photon-to-thermal conversion was obtained for 20-50 ppm of Cu@Cu2O@polymer NPs and 300-650 mW/cm2 of laser power. In contrast, pure Cu@polymer NPs plus red light received less significant PTT effect. In vitro PTT studies also showed that viability of cells incubated with Cu@Cu2O@polymer NPs was significantly decreased after light exposure. The results indicated that Cu@Cu2O@polymer NPs are more appropriate to be applied in PTT therapy than Cu@polymer NPs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T09:19:07Z (GMT). No. of bitstreams: 1 ntu-106-R03524032-1.pdf: 3845817 bytes, checksum: c02e2d9480560ea960a7f22a2740767f (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
中文摘要 i ABSTRACT iii CONTENTS v LIST OF FIGURES viii Chapter 1 Introduction 1 1.1 Nanotechnology in Biomedical Application 1 1.1.1 Nanoscale particles in biomedical use 1 1.1.2 Optical properties of metal NPs in light-induced therapy 2 1.2 Chemical and Biological Properties of Cu-based NPs 4 1.2.1 Copper nanoparticles 4 1.2.2 Oxidation of copper nanoparticles and Cu2O shell formation 5 1.2.3 Synthesis of polymer-coated Cu-based NPs 6 1.3 Research Framework 8 Chapter 2 Materials and Methods 18 2.1 Materials 18 2.2 Equipment 20 2.3 Solution Formula 22 2.3.1 Phosphate Buffered Saline Solution (PBS), pH 7.4 22 2.3.2 DMEM-HG Culture Medium 22 2.3.3 MTT Assay Working Solution 22 2.3.4 DCFH-DA Stock Solution 22 2.4 Methods 23 2.4.1 Cu-based NP Synthesis 23 2.4.1.1 Synthesis of Cu@polymer NPs 23 2.4.1.2 Synthesis of Cu@polymer NPs with halide addition 23 2.4.1.3 Oxidation of CuNPs and formation of Cu@Cu2O@polymer NPs 23 2.4.1.4 Quantification of Cu-based NPs 24 2.4.2 Characterization 24 2.4.2.1 Structures, compositions and optical properties of Cu-based NPs 24 2.4.2.2 Stability and Degradability of Cu-based NPs 24 2.4.2.3 Chemical activity and Catalytic properties of Cu-based NPs 25 2.4.3 In Vitro NP-Cell Interaction 26 2.4.3.1 Cell culture 26 2.4.3.2 Cytotoxicity of Cu-based NPs 27 2.4.3.3 Cytotoxicity of decomposition products of Cu-based NPs 28 2.4.3.4 Cellular uptake of copper element 28 2.4.3.5 ROS generation test of Cu-based NPs 28 2.4.3.6 Identification of cell death pathway 29 2.4.4 Photothermal Effect 31 2.4.4.1 Temperature elevation of Cu-based NPs under irradiation 31 2.4.4.2 In vitro photothermal therapy 31 2.5 Statistical Analysis 32 Chapter 3 Results and Discussion 35 3.1 Characteristics of Cu@polymer NPs 35 3.1.1 Structure, Composition and Optical Property of Cu@polymer NPs 35 3.1.2 Effects of Halides in the Synthesis of Cu@polymer NPs 36 3.1.3 Stability and Degradability of Cu@polymer NPs 37 3.1.4 Oxidation Process of Cu@polymer NPs 38 3.2 Characteristics of Cu@Cu2O@polymer NPs 39 3.2.1 Structure, Composition and Optical Property of Cu@Cu2O@polymer NPs 39 3.2.2 Stability and Degradability of Cu@Cu2O@polymer NPs 41 3.2.3 Chemical Activity and Catalytic Properties 42 3.3 NP-cell Interaction 43 3.3.1 Cytotoxicity of Cu-based NPs 43 3.3.2 ROS Generation Test of Cu-based NPs 44 3.3.3 Identification of Cell Death Pathway 45 3.4 Photothermal Effect 45 3.4.1 Temperature Elevation of Cu-based NPs 45 3.4.2 In Vitro Photothermal Therapy 46 CONCLUSION 61 FUTURE PROSPECTIVES 63 REFERENCES 64 | |
| dc.language.iso | en | |
| dc.subject | 光熱治療 | zh_TW |
| dc.subject | 核─殼層結構 | zh_TW |
| dc.subject | 活性氧物質 | zh_TW |
| dc.subject | 近紅外光 | zh_TW |
| dc.subject | 銅奈米粒子 | zh_TW |
| dc.subject | near infrared | en |
| dc.subject | copper-based nanoparticles | en |
| dc.subject | photothermal therapy | en |
| dc.subject | core-shell structure | en |
| dc.subject | reactive oxygen species | en |
| dc.title | 銅為基底之奈米粒子性質及於光熱治療之應用 | zh_TW |
| dc.title | Characterization of Copper-Based Nanoparticles and the Application to Photothermal Therapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 黃志嘉(Chih-Chia Huang) | |
| dc.contributor.oralexamcommittee | 廖美儀(Mei-Yi Liao),羅世強(Shyh-Chyang Luo) | |
| dc.subject.keyword | 銅奈米粒子,核─殼層結構,活性氧物質,近紅外光,光熱治療, | zh_TW |
| dc.subject.keyword | copper-based nanoparticles,core-shell structure,reactive oxygen species,near infrared,photothermal therapy, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU201701346 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-06 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
