Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59250
標題: 以LSTM結合二次交易策略預測ETF 50股價趨勢
Forecasting ETF50 Trend with LSTM and Two-time Trading Strategy
作者: Pei-Hsuan Shen
沈沛瑄
指導教授: 張瑞益(Ray-I Chang)
關鍵字: 長短期記憶模型,臺灣50,校正策略,交易策略,定價方法,
LSTM,ETF50,Correction strategy,Trading strategy,Pricing method,
出版年 : 2020
學位: 碩士
摘要: 本研究以臺灣50(ETF50)「指數股票型證券投資信託基金」的股票指數作為預測目標。運用深度學習中的長短期記憶模型(Long Short-Term Memory, LSTM)進行研究,將臺灣50指數和其成分股占比最大股票之歷史資料及技術指標資料做為模型的輸入變數。藉由訓練模型預測未來的價格趨勢,並經由模擬交易確立何種交易策略獲利能力較佳。而在策略中,買賣點的價格相對重要。投資人在決策時會希望盡可能地買在低點賣在高點,因此給予投資人作為成交價參考的定價方法中,我們提出「價格區間修正法」跳脫以往常用的「預測收盤價」,進而創造更多獲利空間。此外,考量模型預測誤差會間接影響到交易策略判斷買賣點的時機,本研究也提出「誤差均值移動視窗校正法」,透過實驗找到最適合的校正天數及閥值。本研究將收集到的樣本切割成兩部份,3454筆日資料為訓練資料;384筆日資料為測試資料。經實驗發現:一、本研究提出的「價格區間修正法」獲得4%的報酬率,其結果相當接近以實際最高及最低價進行交易的理想報酬4.03%,有效達成買低賣高之目的;二、本研究加入校正策略以間接修正交易訊號,報酬率的表現由校正前的4%提升至4.55%。
This study uses Taiwan Top50 Exchange Tracker Fund (ETF50) as a forecast target. Using Long Short-Term Memory (LSTM) model in deep learning, the historical data and technical indicators of ETF50 and the largest share of its constituent stocks as input variables of the model. By training the model to predict the future price trend, and through the simulated transaction to establish which trading strategy has the best profitability. And in the strategy, the price of buying and selling points is relatively important. Investors will want to buy as low as possible and sell as high as possible when making decisions. Therefore, in the pricing method given to investors as a reference for the transaction price, we propose the 'price range correction method' to get rid of the 'predicted closing price' used in the past, thereby creating more profitable space. In addition, considering that the model prediction error will indirectly affect the timing of the trading strategy to determine the trading point, we also proposes the 'mean error sliding window correction method', through experiments to find the most suitable correction days and threshold. Our sample data is separated into two parts, 3454 records of training data and 384 records of testing data. After the experiment, it was found that: (1) The 'price range correction method' proposed in this research obtains a 4% return rate, and the result is quite close to the ideal return of 4.03% for trading at the actual highest and lowest prices, effectively achieving the purpose of buying low and selling high; (2) After adding the correction strategy, the performance of the trading signal was corrected indirectly, increasing from 4% before correction to 4.55% to achieve the best return.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59250
DOI: 10.6342/NTU202003412
全文授權: 有償授權
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
U0001-1408202014302500.pdf
  目前未授權公開取用
2.35 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved