請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59219
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱俊翔,陳正興 | |
dc.contributor.author | Min-Chih Hsu | en |
dc.contributor.author | 徐明志 | zh_TW |
dc.date.accessioned | 2021-06-16T09:18:06Z | - |
dc.date.available | 2017-07-20 | |
dc.date.copyright | 2017-07-20 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-10 | |
dc.identifier.citation | 內政部營建署 (2001),「建築物基礎構造設計規範」,台北。
王崑瑞 (2007),「信義計劃區反循環樁摩擦力探討」,台灣海洋大學碩士論文,基隆,台灣。 王鈴聲 (1994),「底承於岩層及礫石層場鑄樁之承載行為探討」,台灣科技大學碩士論文,台北。 王獻增 (2000),「台北盆地黏性土壤不排水剪力強度之研究」,中央大學碩士論文,中壢,台灣。 何樹根 (2000),“場鑄基樁施工之考量”,樁基工程,地工技術研究發展基金會,台北。 周忠仁、詹家賓、蘇鼎鈞 (2000),'樁底灌漿之回顧與探討',土木技術第三卷第一期,第64~70頁。 周鏡 (1995) ,「樁基工程」,中國建築工業出版社,北京,第一章,第1-8頁。 俞清瀚 (2015),'台灣大尺寸場鑄基樁載重試驗之發展與應用',第五屆深基礎工程發展論壇,杭州,第217-235頁。 俞清瀚、徐明志、簡進龍 (2013),'台灣壁式基樁之應用與案例',2013海峽兩岸地工技術∕岩土工程交流研討會,台北,第241-252頁。 徐明志、何樹根、陳斗生 (2002),'大口徑場鑄基樁施工質量之控管經驗',海峽兩岸地工技術/岩土工程交流研討會論文集,上海。 高秋振、徐明志、何樹根、俞清瀚 (2011),'樁底高壓沖洗灌漿施工之品質控管與檢驗',第十四屆大地工程學術研討會,桃園,台灣,第B21-1~B21-9頁。 高秋振、何樹根 (2009),'樁體彈性係數對基樁載重試驗分析之影響探討',第十三屆大地工程研討會論文集,宜蘭,台灣,第A18-1~A18-11頁。 高秋振、徐明志、何樹根 (2008),'樁底高壓沖洗灌漿工法之介紹',陳斗生博士紀念論文集,富國公司,台北,第197-220頁。 秦中天、鄭在仁、劉泉枝 (1989),'台北沈泥之不排水剪力強度與過壓密比之關係',中國土木水利工程學刊,第1卷,第3期,第245-250頁。 國家實驗研究院、中興工程顧問社 (2012),「公路橋梁耐震性能設計規範委託研究案(第2期)期末報告」,交通部台灣區國道新建工程局,台北。 陳正興、黃俊鴻 (2016),「基礎性能分析」,地工技術發展基金會,台北。 陳正興等 (1997),「高鐵橋梁基礎最佳化研究總報告」,交通部高速鐵路工程局,台北。 張有恒、謝謹至、駱至能、施志鴻 (2011),'壁樁之施工與承載力試驗',地工技術,第128期,台北,第241-252頁。 張有恒、葉仁德、謝旭昇、王崑瑞 (2007),'由先期試樁結果探討樁底灌漿之受力行為',地工技術,第112期,台北,第27-36頁。 郭正道 (1997),'新圓山高架橋施工遭遇問題(一)-鑽掘基樁樁底灌漿',中華技術,第三十六期,第47~54頁。 郭正道 (1993),'鑽掘基樁承載力的新發展-兼論樁底灌漿',中華技術,第十九期,第47~55頁。 蔡煜青 (2006),「壁樁垂直承載力試驗之案例分析」,台灣大學碩士論文,台北。 廖惠菁 (2008),「以t-z曲線分析台北市信義計畫區反循環樁之現地承載行為」,台灣科技大學碩士論文,台北。 山崎貴之、青木一二三、高野公作、宮坂享明 (2009),'場所打ち杭のハイブリッドナミック急速載荷試験 その2 砂礫土の周面摩擦力度について',第44回地盤工学研究発表会,横浜。 日本建築学会 (JAS) (1988, 2001),「建築基礎構造設計指針」,日本建築学会,東京。 日本道路協会 (JRA) (2002, 2012),「道路橋示方書・同解説 I・IV共通編・下部構造編」,丸善株式會社,東京。 日本鉄道綜合技術研究所 (RTRI) (1997, 2012),「鉄道構造物等設計標準・同解説-基礎構造物・抗土圧構造物」,丸善株式會社,東京。 駒田敬一、山川朝生 (1974),「くいの支持力と変形特性に関する調十査」,土木研究所資料,第963号。 American Association of State Highway and Transportation Officials (AASHTO) (1996), Standard Specifications for Highway Bridges, 16th Ed. API (2002), 2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms-working stress design. American Petroleum Institute Recommended Practice. ASTM (2007), 'Designation: D1143/D1143M-07: Standard test methods for deep foundations under static axial compressive load', American Society of Testing and Materials. Barton, N. R. (1973), 'Review of a new shear strength criterio for rock joints. ' Eng. Geology, 7, 287-332. Bolognesi, A. J. L., Moretto, O. (1973), 'Stage grouting preloading of large piles on sand.' Proceedings of the 8th ICSMFE, Moscow, 19-25. Boussinesq, J. V. (1885), 'Applications des potentials à l’étude de l’ équilibre et du movement des solids élastiques,' Gautier-Villars, Paris. Brown,D. A. and Axtell, P. J.(2010). 'Design and Construction Challenges at kcICON Bridge.' Deep Foundations, Spring, 2010. Bruce, D. A. (1986a), 'Enhancing the performance of large diameter piles by grouting- Part 1.' Ground Engineering, 19(4), 9-15. Bruce, D. A. (1986b), 'Enhancing the performance of large diameter piles by grouting- Part 2.' Ground Engineering, 19(5), 11-19. Canadian Geotechnical Society (1985). Foundation Engineering Manual. 2nd Ed. Chen C. S. and Koh C. C. (2007), 'Performance of bored piles with high pressure base grouting.' Proceedings of the 16th Southeast Asian Geotechnical Conference, Subang Jaya, Malaysia. 751-754. Chen, Y. J., and Kulhawy, F. H. (2003), 'Evaluation of undrained side and tip Resistances for drilled shafts.', Soil and Rock America, 2, 1963-1968. Chen, Y.J., and Kulhawy, F.H. (2002), 'Evaluation of Drained Axial Capacity of Drilled Shafts.' GSP 116 ASCE, 2, 1201-1214. Chen, Y. J., and Kulhawy, F. H. (1994), Case history evaluation of behavior of drilled shafts under axial and lateral loading, Report TR-104601, EPRI, Palo Alto. Coyle, H. M. and Reese, L. C. (1966), 'Load transfer for axially loaded piles in clay.' Journal of the Soil Mechanics and Foundations Division, 9(6), 1-26. Dapp, S. and Brown, D. (2010), 'Evaluation of base grouted drilled shafts at the Audubon bridge.' GeoFlorida 2010, Advances in Analysis, Modeling and Design, Geotechnical Special Publication No. 199, ASCE, 1553-1562. Dapp, S., Muchard, M., and Brown, D. (2006), 'Experiences with base grouted drilled shafts in the Southeastern United States.' Proceedings of the 10th International Conference on Deep Foundations, Amsterdam, Netherlands. Decourt, L. (1995), 'Prediction of load-settlement relationships for foundations on the basis of the SPT-N'. Ciclode Conferencias Intern. 'Leonardo Zeevaert', UNAM, Mexico, 85-104. Findlay, J. D. (1984), Discussion, Piling and ground treatment, 189-190, Thomas Telford. Ho, C. E. and Lim, C. H. (1998), 'Barrettes designed as friction foundations: a case history.' Proceedings of the 4th International Conference on case histories in Geotechnical Engineering, St. Louis, Missouri, 236-241. Hoek, E. and Bray, J.W. (1981), Rock Slope Engineering. Revised 3rd Edition, The Institution of Mining and Metallurgy, London. Hirany, A., and Kulhawy, F. H. (2002), 'On the interpretation of drilled foundation load test results.' Deep foundations, GSP 116, M. W. O’Neill and F. C. Townsend, eds., Vol. 2, ASCE, Reston, Va., 1018-1028. Hirany, A., and Kulhawy, F. H. (1988), Conduct and interpretation of load tests on drilled shaft foundations: detailed guidelines. Report. EL-5915(1), Electric Power Research Institute, Palo Alto. Hirayama H. (1990), 'Load-settlement analysis for based piles using hyperbolic transfer functions.' Soils and Foundations, 30(1), 55-64. Kraft, L. M. & Lyons, C. G. (1974), 'State of the art: ultimate axial capacity of grouted piles. 'Proceedings of the 6th Annual OTC, Houston Paper OTC 2081,487-503. Lee, S. K., Lau, T. K., Tan, A. H. and Chong, Y. W. (2007), 'Strain-dependent non-linear behavior of bored pile concrete modulus in instrumented static axial compression load tests', Proceedings of the 16th Southeast Asian Geotechnical Conference. Lee, S. K., Lau, T. K. and Tan, A. H. (2006), 'Analysis of strain-dependent concrete modulus from mass instrumented test pile samples', Proceedings of 10th International Conference on Piling and Deep Foundation, Amsterdam, 684~689. Leonards, G. A. (1962), Foundation Engineering. McGraw-Hill, New York, 208-217. Lin, S. S., Yin, Y. L., Fu, K. C., Lin, Y. K., Kuo, C. J., and Chang, Y. H. (2015), 'Effects of toe grouting on axial performance of rock socketed drilled shafts.' Geotechnical Engineering, Journal of the SEAGS & AGSSEA, 41(2), 87-93. Lin, S. S., Liao J. C., Wang K. J., and Chang, Y. H. (2008), 'Effect of tip grouting on capacity of shafts socket in gravel layer.' Journal of the Southeast Asian Geotechnical Society, 39(1), 13-17. Lin, S. S., Wang, K. J., Hsieh, H. S., Chang, Y. H., and Huang, C. S. (2007), 'Field testing of axially loaded drilled shafts in clay-gravel layer.' Journal of GeoEngineering, 2(3), 123-128. Lin, S. S., Lin, T., and Chang, L. T. (2000), 'A case study for drilled shafts base mud treatment.' New Technological and Design Developments in Deep Foundations, GSP No. 100, ASCE, 46-58. doi:http://dx.doi.org/10.1061/40511(288)4. Meyerhof, G. G. (1976), 'Bearing capacity of settlement of pile foundations.' The Eleventh Terzaghi Lecture, Journal of Geotechnical Engineering, 102, GT3, 195-228. Morrison, I. M. (1987), 'Bored piled foundation for Chao Phya river crossing at Wat Sai, Bangkok.' Proceedings of the 9th SEAGS Conference, Vol. 6, Bangkok. 207-218. Mosher, R. L. (1984), 'Load transfer criteria for numerical analysis of axially loaded piles in sand; Part 1: Load transfer criteria.' Technical Report K-84-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. Mullins, G., Winters, D. and Dapp, S. (2006), 'Predicting end bearing capacity of post-grouted drilled shaft in cohesionless soils.' Journal of Geotechnical and Geoenvironmental Engineering, 132(4), 478-487. doi:10.1061/(ASCE)1090-0241(2006)132:4(478). Mullins, G., Winters D. (2004), Post-grouting of drilled shafts, Phase II, Final Report. Submitted to the Florida Department of Transportation, Tallahassee, Florida. Mullins, G., Dapp, S., Frederic E., and Wagner V. (2001), Post-grouting of drilled shafts, Phase I, Final Report. Submited to the Florida Department of Transportation, Tallahassee, Florida. Ng, C. W. W. and Lei, G. H. (2003), 'Performance of long rectangular barrettes in granitic saprolites.' Journal of Geotechnical and Geoenvironmental Engineering, 129(8), 685-696. doi:10.1061/(ASCE) 1090-0241 (2003)129:8(685). Ng, C. W. W., Rigby D. B., Ng, S. W. L. and Lei, G. H. (2000), 'Field studies of well-instrumented barrette in Hong Kong.' Journal of Geotechnical and Geoenvironmental Engineering, 126(1), 60-73. doi:http://dx.doi.org/10.1061/ (ASCE)1090-0241(2000)126:1(60). O’Neill, M. W. and Reese, L. C. (1999), Drilled Shafts: Construction Procedures and Design Methods. Publication No. FHWA-IF-99-025, Federal Highway Administration, Washington, D.C. O’Neill, M. W., and Hassan, K. M. (1994), 'Drilled shafts: effects of construction and performance and design criteria.' Proceedings of International Conference on Deep Foundations, Orlando, Florida, Federal Highway Administration, December, 137-187. Poulos, H. G. (1988), 'The mechanics of calcareous sediments. ' Jaeger Memorial Lecture, 5th Australia-New Zealand Geomechs. Conf., Austr. Geomechs, 841. Poulos, H. G. and Davis E. H. (1980), Pile foundation analysis and design, John Wiley and Sons, NY. Reese, L. C., Isenhower, W. M., and Wang, S. T. (2006), Analysis and design of shallow and deep foundations. John Wiley & Sons, Hoboken, New Jersey. Reese, L. C., and O’Neill, M. W. (1988), Drilled Shafts: Construction Procedures and Design Methods, U.S. Department of Transportation, Federal Highway Administration, Office of Implementation, McLean, VA. Reese, L. C. and O’Neill, M. W. (1988), 'Field Load Test of Drilled Shaft.' Proceedings of International Seminar on Deep Foundations on Bored and Auger Piles, Van Impe (ed.), Balkema, Rotterdam, 145-192. Ruiz, M. E. (2005), Study of axially loaded post grouted drilled shafts using CPT based load transfer curves. M.S. Thesis, Department of Civil Engineering, University of Puerto Rico. Scott R. F. (1981), Foundation Analysis, Prentice-Hall, Englewood Cliffs, NJ.. Seed, S. B. and Reese, L. C. (1957), 'The action of soft clay along friction piles.' Transactions, ASCE, 122, 1465-1488. Sliwinski, Z. J. and Fleming, W. G. K (1984), 'The integrity and performance of bored piles.' Proceedings of ICE Conference on Piling and Ground Treatment, London, 211-224. Stas, C. V. and Kulhawy, F. H. (1984), Critical evaluation of design methods for foundations under axial uplift and compression loading, Report EL-3771, EPRI, Palo Alto. Teparaksa, W., Thasnanipan, N. and Anwar, M.A. (1999), 'Base grouting of wet process bored piles in Bangkok subsoil.' Proceedings of the 11th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 269-272. Vijayvergiya, V. N. (1977), 'Load-movement characteristics of piles.' Proceedings, Ports 77, American Society of Civil Engineers, Vol II, 269-286. Weaver, K.D. (1991), Dam foundation grouting, American Society of Civil Engineers, NY. Winkler, E. (1867), Die lehre von elastizitatunffestigheit, Dominicus, Prague, Czechoslovakia. Wright, S. J. & Reese, L. C. (1979), 'Design of large diameter bored piles. 'Ground Engineering, 12(8), 17-50. Yamashita. K.. Tomono. M. and Kakurai, M. (1987), 'A method for estimating immediate settlement of piles and pile groups. 'Soils and Foundations, 27(1), 61-76. Yu, C. H. (2011), 'On design and construction of pile group foundation of Taipei 101.' Geotechnical Engineering, Journal of the SEAGS & AGSSEA, 42(2), 56-69. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59219 | - |
dc.description.abstract | 本研究藉由位於台北盆地及高雄市區中達極限破壞之壁樁載重試驗案例,完整分析矩形壁樁之垂直承載行為。所選壁樁試驗案例均加載至樁頭位移大於10%壁樁寬度(B),並根據埋設於樁體內不同深度之鋼筋計應變,計算出各土層之完整t-z曲線及q-w曲線,用來探討矩形壁樁之樁周摩擦阻抗及樁底阻抗特性。
根據矩形壁樁極限載重試驗所歸納得到之t-z曲線,除了含有礫石之地層外,無論是黏性土壤或無凝聚性土壤主要均呈位移軟化現象,其樁周摩擦阻抗隨有效覆土壓力增大而增加,尖峰摩擦應力大約發生於位移20mm處;於較大位移時則呈現小幅度軟化現象,在位移達0.1B時之殘餘摩擦應力與尖峰摩擦應力之比值約介於0.81~0.92。此外,整理樁周摩擦阻抗與標準貫入試驗N值及不排水剪力強度su之關係,並與工程實務中常用之經驗公式進行比較,結果顯示,使用國內建築物基礎構造設計規範中之經驗公式估算壁樁之樁周摩擦阻抗時,其結果可能均偏向保守。 比較台北華中橋案例中有、無施作樁底灌漿壁樁之試驗結果,可量化樁底灌漿之成效,結果顯示,樁底灌漿確能改善樁底土壤之承載性能,有效提高樁底之極限承載能力,其對本案例中長樁之樁頭荷重-位移(Q~S)曲線的初始勁度幾乎没有影響,然而於樁頭承受大荷重及位移情況下,樁底灌漿明顯提高樁頭反應曲線之塑性勁度及整體極限承載力。 為簡化模型方便工程應用,可將t-z曲線簡化為完全彈塑性模式,q-w曲線則簡化為彈塑性雙直線模式;利用此簡化雙線性模式進行試樁曲線之反算分析,其模擬結果與現場試驗數據相當一致。此外,本研究建議亦可將樁頭Q~S曲線簡化為雙線性模式,此雙線性基樁垂直承載模式簡單且具代表性,方便應用於群樁分析或樁筏複合基礎之土壤-結構互制分析使用。 | zh_TW |
dc.description.abstract | A comprehensive analysis for the bearing behavior of barrette piles is carried out based on ultimate load tests on piles located in the Taipei Basin and Kaohsiung City. All piles are loaded to their ultimate conditions with pile head displacements larger than 10% of the barrette’s thickness (B). Based on the strains measured at several depths along the pile shaft, complete side resistance t–z curves for various soil strata and end bearing q-w curves are obtained for detailed investigations.
The characteristics of side resistances for cohesive and cohesionless soils are then quantitatively determined. Except for soil strata with gravel, most of the t–z curves exhibit a deflection-softening behavior. The peak resistances occur at a local pile displacement of approximately 20 mm, and the residual strength at a local pile displacement of 10% of the thickness of the barrette pile will be slightly reduced to a ratio of 0.79–0.92 of the peak strength. The side resistance generally increases with the effective overburden pressure. In addition, the relationship between the side resistance and the soil’s SPT-N values, as well as the undrained shear strength, are calculated and compared with the empirical formula commonly used in engineering practice. Results show that the empirical formula defined in the Design Specifications of Structural Foundations in Taiwan are conservative for estimating the side resistance of barrette piles. Comparing the test results of piles with and without base grouting in the Taipei case, the effects of base grouting can be quantitatively evaluated. Results show that the base grouting has almost no influence on the initial stiffness of the pile head response curve (Q-S curve) for such a long piles, but significantly increases the ultimate bearing capacity and plastic stiffness of the pile under large pile head displacement. Based on the t-z and q-w curves obtained in this study, it is suggested to simplify the non-linear curves by corresonding bilinear models for the convenience of engineering applications. Results of back analyses using the simplified model agree well with the load tests. In addition, the bilinear models for load-deflection curves at pile head as well as the corresponding equivalent stiffness are suggested for the analysis of group piles or soil-structure interaction of pile-raft foundation. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:18:06Z (GMT). No. of bitstreams: 1 ntu-106-D99521019-1.pdf: 15183622 bytes, checksum: 4e848208a4c3fde5962ccb7c1f627c6d (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 目錄
致謝………………………………………….……………………………….i 摘要…………………………………………………………………………iii Abstract…………………………………..………………………….………iv 目錄…………….…………………………………………………………..vii 表目錄………………………………………………….………………..…..x 圖目錄…………………………………………………………….………..xii 第一章 緒論 1-1 1.1 研究動機及目的 1-1 1.1.1矩形壁樁之使用需求 1-1 1.1.2 性能設計趨勢 1-1 1.2 研究方法 1-2 1.3 研究內容 1-4 第二章 文獻回顧 2-1 2.1 場鑄樁垂直承載力 2-1 2.1.1 單樁垂直支承力 2-1 2.1.2 椿周極限摩擦阻抗 2-2 2.1.2.1 靜力學公式 2-2 2.1.2.2 標準貫入試驗公式 2-6 2.1.3 樁底極限承載阻抗 2-7 2.2 基樁分析模型 2-8 2.2.1 基礎分析模型 2-8 2.2.2 基樁温克分析模式 2-10 2.2.3 t-z與q-w曲線理論式 2-12 2.2.4 t-z與q-w曲線經驗式 2-14 2.2.5 用於結構分析之單樁模擬方式 2-17 2.2.5.1 分佈彈簧模式 2-17 2.2.5.2 樁頭等值軸向彈簧模式(子結構模式) 2-20 2.3 樁底灌漿 2-22 2.3.1 樁底灌漿之發展狀況 2-22 2.3.2 常用樁底灌漿工法 2-23 2.3.2.1 U型管工法 2-23 2.3.2.2 平板膜工法 2-25 2.3.2.3 高壓沖洗灌漿工法 2-25 第三章 樁載重試驗分析方法 3-1 3.1 試樁資料分析方法 3-1 3.1.1 荷重傳遞曲線 3-1 3.1.2 各地層t-z曲線 3-3 3.1.3 樁底q-w曲線 3-4 3.2 樁頭荷重-位移曲線反算分析方法 3-5 第四章 壁樁載重試驗案例分析 4-1 4.1台北華中橋案例 4-1 4.1.1基地位置及地層狀況 4-1 4.1.2 試驗樁概況 4-3 4.1.3 試驗成果分析 4-4 4.1.3.1 樁頭荷重-位移曲線 4-5 4.1.3.2 樁周摩擦阻抗及樁底承載阻抗 4-6 4.2 高雄新光路案例 4-8 4.2.1 基地位置及地層狀況 4-8 4.2.2 試驗樁概況 4-10 4.2.3 試驗成果分析 4-10 4.2.3.1 樁頭荷重-位移曲線 4-10 4.2.3.2 樁周摩擦阻抗及樁底承載阻抗 4-11 4.3 試樁曲線反算分析 4-13 4.3.1 台北華中橋案例 4-13 4.3.2 高雄新光路案例 4-14 第五章 樁周及樁底阻抗之探討 5-1 5.1 樁周摩擦阻抗 5-1 5.1.1 樁周摩擦阻抗特性 5-1 5.1.2 樁周摩擦阻抗與SPT-N之相關性 5-4 5.1.3 樁周摩擦阻抗與su之相關性 5-5 5.1.4 卵礫石層樁周摩擦阻抗探討 5-7 5.2 樁底阻抗及灌漿成效評估 5-9 5.2.1 樁頭荷重-位移曲線 5-9 5.2.2 卵礫石層阻抗 5-10 5.3 長樁荷重傳遞及承載機制探討 5-12 5.3.1 台北華中橋案例之荷重傳遞行為 5-13 5.3.2 高雄新光路案例之荷重傳遞行為 5-16 5.3.3 壁樁之樁底承載能力檢討 5-18 5.3.4 壁樁降伏後行為探討 5-20 5.3.5 小結 5-21 第六章 簡化分析模式及應用 6-1 6.1 簡化t-z及q-w雙線性模式 6-1 6.1.1 完全彈塑性t-z模式 6-1 6.1.2 彈塑性雙直線q-w模式 6-3 6.1.3 試樁曲線反算分析 6-4 6.1.3.1 採用各地層平均曲線 6-4 6.1.3.2 採用各試驗樁之試驗曲線 6-5 6.1.4 等值彈性勁度k10與SPT-N之關係 6-6 6.2 簡化雙線性基樁垂直承載模式 6-8 6.2.1 簡化雙線性基樁垂直承載模式定義 6-8 6.2.2 工程應用探討 6-9 第七章 結論與建議 7-1 7.1 結論 7-1 7.2 建議 7-3 參考文獻 R-1 | |
dc.language.iso | zh-TW | |
dc.title | 矩形壁樁垂直承載行為之研究 | zh_TW |
dc.title | The Bearing Behavior of Barrette Piles under Vertical Loading | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林宏達,黃俊鴻,林三賢,陳逸駿 | |
dc.subject.keyword | 壁樁,樁底灌漿,t-z曲線,q-w曲線,簡化雙線性模式, | zh_TW |
dc.subject.keyword | barrette pile,base grouting,t-z curve,q-w curve,simplified bi-linear model, | en |
dc.relation.page | 220 | |
dc.identifier.doi | 10.6342/NTU201701262 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-11 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 14.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。