請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59218
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林致廷(Chih-Ting Lin) | |
dc.contributor.author | Ting-Wei Wu | en |
dc.contributor.author | 吳亭緯 | zh_TW |
dc.date.accessioned | 2021-06-16T09:18:05Z | - |
dc.date.available | 2019-08-01 | |
dc.date.copyright | 2017-07-17 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-10 | |
dc.identifier.citation | Chia-Hong Gao and Chih-Ting Lin, “A microfluidic particle-analyzing device with novel coplanar electrode design based on impedance sensing,” Master Thesis, Graduate Institute of Electronics Engineering, July, 2016.
P. Estrela, S. D. Keighley, P. Li and P. Migliorato, “Application of Thin Film Transistors to Label-Free Electrical Biosensors,” IEEE International Symposium on Industrial Electronics, July, 2008. T. Rim et al, “Electrical Characteristics of Doped Silicon Nanowire Channel Field-Effect Transistor Biosensors,” IEEE SENSORS JOURNAL, Vol. 17, No. 3, 2017. R. Adzhri et al, “FET-Based Biosensors with Back-Gate Coupling Towards the Electrical Pre-amplification of Cardiac Troponin I Detection,” IEEE-ICSE 2016, Kuala Lumpur, Malaysia, 2016. Pei-Wen Yen et al, “LuEmerging Electrical Biosensors for Detecting Pathogens and Antimicrobial Susceptibility Tests,” Current organic chemistry, Vol. 18, p. 165-172, 2014. Anis Nurashikin Nordin et al, “A lab-on-chip cell-based biosensor for label-free sensing of water toxicants,” Lab on a Chip, Vol. 14, p. 1270-1280, 2014. P. Sharma, B. Tudu, L. P. Bhuyan and P. Tamuly, “Detection of Methyl Salicylate in Black Tea Using a Quartz Crystal Microbalance Sensor,” IEEE SENSORS JOURNAL, Vol. 16, No. 13, July 1, 2016. J Zhao, M. Liu, W. Wang and J. Xie, “Airborne Particulate Matter Classification And Concentration Detection Based On 3D Printed Virtual Impactor And Quartz Crystal Microbalance Sensor,” IEEE MEMS 2016, Jan, Shanghai, China, 2016. Y. Yokoi, K. Yoshida, R. Shimoya and Y. Watanabe, “The evaluation system for measuring sensitivity of microbubbles to target molecules using a quartz crystal microbalance,” IEEE International Ultrasonics Symposium, 2015. Y. Yamamoto, “PCR in Diagnosis of Infection: Detection of Bacteria in Cerebrospinal Fluids,” Clinical and Diagnostic Laboratory Immunology, p. 508-514, May, 2012. F. R. G. Cruz, C. M. Magsipoc, F. E. B. Alinea and W.-Y. Chung et al, “Application Specific Integrated Circuit (ASIC) for Ion Sensitive Field Effect Transistor (ISFET) L-Asparagine Biosensor,” IEEE Region 10 Conference (TENCON), 2016. N. Miscourides and P. Georgiou, “A Linear Programmable-Gate ISFET Array Operating in Velocity Saturation,” IEEE Biomedical Circuits and Systems Conference, October, 2016. J. Rajendhran and P. Gunasekaran, “Microbial phylogeny and diversity: Small subunit ribosomal RNA sequence analysis and beyond,” Microbiological Research, 166, p. 99-110, 2011. Valery V. Tuchin, “Advanced Optical Flow Cytometry: Methods and Disease Diagnoses,” Wiley-VCH, ISBN 978-3-527-40934-1, 2011. A Tzur et al, “Optimizing Optical Flow Cytometry for Cell Volume-Based Sorting and Analysis,” PLoS ONE, Vol. 6, Issue 1, 2011. B. B. Collier et al, “Non-Linear Optical Flow Cytometry Using a Scanned, Bessel Beam Light-Sheet,” Nature Scientific Reports, 5:10751, 2015. J. Chen et al, “Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization,” International Journal of Molecular Sciences, Vol. 16, p. 9804-9830, 2015. F.H. Labeed, H.M. Coley, H. Thomas, M.P. Hughes, “Assessment of multidrug resistance reversal using dielectrophoresis and flow cytometry,” Biophys. J, Vol. 85, p. 2028-2034, 2003. L. M. Broche et al, “Extraction of dielectric properties of multiple populations from dielectrophoretic collection spectrum data,” Phys. Med. Biol, Vol. 50, p. 2267-2274, 2005. L. Duncan et al, “Dielectrophoretic analysis of changes in cytoplasmic ion levels due to ion channel locker action reveals underlying differences between drug-sensitive and multidrug-resistant leukaemic cells,” Phys. Med. Biol, Vol. 53, N1-N7, 2008. M. Bebarova, “Advances in patch clamp technique: Towards higher quality and quantity,” Gen. Physiol. Biophys, Vol. 31, p. 131-140, 2012. L. Yobas, “Microsystems for cell-based electrophysiology,” J. Micromech. Microeng, Vol. 23, No. 8, 2013. A. C. Sabuncu, J. Zhuang, J. F. Kolb and A. Beskok, “Microfluidic impedance spectroscopy as a tool for quantitative biology and biotechnology,” Biomicrofluidics, Vol. 6, 034103, 2012. T. Sun and H. Morgan, “Single-cell microfluidic impedance cytometry: A review,” Microfluid. Nanofluid, Vol. 8, p. 423-443, 2010. Y. H. Cho et al, “Development of microfluidic device for electrical/physical characterization of single cell,” J. Microelectromech. Syst, Vol. 15, p. 287-295, 2006. L. S. Jang and W. H. Wang, “Microfludic device for cell capture and impedance measurement,” Biomed. Microdevices, Vol. 9, p. 737-743, 2007. L. S. Jang, P. H. Huang and K. C. Lan, “Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes,” Biosens. Bioelectron, Vol. 24, p. 3637-3644. K. C. Lan and L. S. Jang, “Integration of single-cell trapping and impedance measurement utilizing microwell electrodes,” Biosens. Bioelectron, Vol. 26, p. 2025-2031, 2011. M. Thein et al, “Response characteristics of single-cell impedance sensors employed with surface-modified microelectrodes,” Biosens. Bioelectron, Vol. 25, p. 1963-1969, 2010. Y. Zheng et al, “Recent advances in microfluidic techniques for single-cell biophysical characterization,” Lab Chip, Vol. 13, p. 2464-2483, 2013. Y. Xu et al, “A review of impedance measurements of whole cells,” Biosensors and Bioelectronics, Vol. 77, p. 824-836, 2016. W.H. Coulter, “Means for counting particles suspended in a fluid”, US Patent no. 2,656,508, October, 1953. H. P. Schwan, “Electrical properties of tissue and cell suspensions,” Adv. Biol. Med. Phys, Vol. 5, p. 147-209, 1957. R. A. Hoffman and W. B. Britt, “Flow system measurements of cell impedance properties,” J Histochem Cytochem, Vol. 27, p. 234-240, 1979. H. E. Ayliffe, A. B. Frazier and R. D. Rabbit, “Electric impedance spectroscopy using microchannels with integrated metal electrodes,” J Microelectromech Syst, Vol. 8, p. 50-57, 1999. C. K. Fuller et al, “Microfabricated multifrequency particle impedance characterization system,” μTAS symposium, Enschede, The Netherlands, p. 265-268, May, 2000. L. L. Sohn, “Capacitance cytometry: measuring biological cells one by one,” PNAS, Vol. 97, p. 10687-10690. S. Gawad, L. Schild and Ph. Renaud, “Micromachined impedance spectroscopy flow cytometer for dell analysis and particle sizing,” Lab Chip, Vol. 1, p. 76-82, 2001. J. H. Nieuwenhuis et al, “Integrated Coulter counter based on 2-dimensional liquid aperture control,” Sensors and Actuators B, Vol. 102, p. 44-50, 2004. D. K. Wood et al, “High-bandwidth radio frequency Coulter counter,” Appl. Phys. Lett, Vol. 87, 184106, 2005. H. Morgan, D. Holmes and N. G. Green, “High speed simultaceous single particle impedance and fluorescence analysis on a chip,” Curr. Appl. Phys, Vol. 6, p. 367-370, 2006. S. Murali et al, “A microfluidic Coulter counting device for metal wear detection in lubrication oil,” Rev Sci Instrum, Vol. 80, 016105, 2009. K. Cheung, S. Gawad and Ph. Renaud, “Impedance Spectroscopy Flow Cytometry: On-Chip Label-Free Cell Differentiation,” Cytometry Part A, 65A, p. 124-132, 2005. D. Holmes and H. Morgan, “Single Cell Impedance Cytometry for Identification and Counting of CD4 T-cells in Human Blood Using Impedance Labels,” Anal. Chem, Vol. 82, p. 1455-1461, 2010. D. Spencer and H. Morgan, “Positional dependence of particles in microfluidic impedance cytometry,” Lab Chip, Vol. 11, p. 1234-1239, 2001. N. Haanbaek et al, “Development of a Microfluidic GHz Impedance Cytometer,” Technisches Messen, Vol. 80(12), p. 411-420, 2013. N. Haanbaek et al, “Resonance-enhanced microfluidic impedance cytometer for detection of single bacteria,” Lab Chip, Vol. 14(17), p.3313-3324, 2014. N. Haanbaek et al, “Characterization of subcellular morphology of single yeast cell using high frequency microfluidic impedance cytometer,” Lab Chip, Vol. 14, p. 369-377, 2013. R. Rodriguez-Trujillo et al, “Label-free protein detection using a microfluidic Coulter-counter device,” Sensors and Actuators B: Chemicals, Vol. 190, p. 922-927, 2014. Ministry of Health and Welfare, ”http://www.mohw.gov.tw/news/572256044”, 2016. Taipei City Hospital, “http://www.tpech.gov.taipei/mp.asp?mp=109011”, 2016. S. Zheng and Y.-C. Tai, “Human Blood Cell Sensing with Platinum Black Electroplated Impedance Sensor,” IEEE-NEMS’07, Bangkok, Thailand, 2007. M. Evander et al, “Microfluidic impedance cytometer for platelet analysis,” Lab Chip, Vol. 13, p. 722-729, 2013. C. Bernabini, D. Holmes and H. Morgan, “Micro-impedance cytometry for detection and analysis of micro-sized particles and bacteria,” Lab Chip, Vol. 11, p. 407-412, 2011. H. Choi et al, “A label-free DC impedance-based microcytometer for circulating rare cancer cell counting,” Lab Chip, Vol. 13, p. 970-977, 2013. M. Shaker et al, “An impedance-based flow microcytometer for single cell morphology discrimination,” Lab Chip, Vol. 14, p. 2548-2555, 2014. X. Xing and L. Yobas, “A Single-cell Impedance Flow Cytometry Microsystem Based on 3D Silicon Microelectrodes,” IEEE MEMS, Shanghai, China, January, 2016. Coulter Counter Principle, “https://en.wikipedia.org/wiki/Coulter_counter”. A. K. Bryan et al, “Continuous and Long-Term Volume Measurements with a Commercial Coulter Counter,” PLoS One, Vol. 7(1), e29866, January, 2012. P. Jacobs, A. Varlan and W. Sansen, “Design optimization of planar electrolytic conductivity sensor,” Med. & Biol. Eng. & Comput, Vol. 33, p. 802-810, 1995. J.-L. Hong, K.-C. Lan and L.-S. Jang, “Electrical characteristics analysis of various cancer cells using a microfluidic device based on single-cell impedance measurement,” Sensors and Actuators B: Chemical, Vol. 173, p. 927-934, 2012. D. Satake et al, “A sensor for blood cell counter using MEMS technology,” Sensors and Actuators B: Chemical, Vol. 83, p. 77-81, 2002. Permittivity, “https://en.wikipedia.org/wiki/Permittivity”. S. Emaminejad et al, “Portable cytometry using microscale electronic sensing,” Sensors and Actuators B: Chemical, Vol. 224, p. 275-281, 2016. T. Sun et al, “Dielectric spectroscopy of single cells: time domain analysis using Maxwell’s mixture equation,” J. Phys. D: Appl. Phys, Vol. 40, p. 1-8, 2007. H. Morgan et al, “Single cell dielectric spectroscopy,” J. Phys. D: Appl. Phys, Vol. 40, p. 61-70, 2007. G. H. Markx and C. L. Davey, “The dielectric properties of biological cells at radiofrequencies: Applications in biotechnology,” Enzyme and Microbial Technology, Vol. 25, p. 161-171, 1999. K. Heileman, J. Daoud and M. Tabrizian, “Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis,” Biosensors and Bioelectronics, Vol. 49, p. 348-359, 2013. T. Sun, N. Green and H. Morgan, “Analytical and Numerical Modeling Methods for Impedance Analysis of Single Cells On-Chip,” NANO: Brief Reports and Reviews, Vol. 3(1), P. 55-63, 2008. J. Claudel, M. Nadi, O. Elmazria and D. Kourtiche, “Microfluidic biosensor for single cell high speed flow impedance spectroscopy,” 8th International Conference on Sensing Technology, Liverpool, UK, September, 2014. A. Di Biasio and C. Cametti, “On the dielectric relaxation of biological cell suspensions: The effect of the membrane electrical conductivity,” Colloids and Surfaces B: Biointerfaces, Vol. 84, p. 433-441, 2011. M. Nasir et al, “Hydrodynamic Focusing for Improved Sensitivity of an Impedance-Based Sensor for Cell Detection and Analysis,” 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Oct, Groningen, The Netherlands, 2010. Standard Operating Procedure for Parylene Coater, “Specialty Coating Systems PDS2010 Parylene Coater,” July, 2008. K. Kim, S.-W. Park and S.-S. Yang, “The optimization of PDMS-PMMA bonding process using silane primer,” BioChip J, Vol. 4(2), p. 148-154, 2010. Flow Cytometry Principles, “http://www.news-medical.net/life-sciences/Flow-Cytometry-Principles.aspx.” Y. Hidenao, Y. Toyohiko, UEDA Yukio and Y. Yutaka, “Tomographic Phase Imaging Flow Cytometry for Detecting Circulating Tumor Cells,” Medical Imaging Technology, Vol. 34, p. 95-102, 2016. T. Blasi et al, “Label-free cell cycle analysis for high-throughput imaging flow cytometry,” Nature Communications, Vol. 7, No. 10256, 2016. J. Hong et al, “AC frequency characteristics of coplanar impedance sensors as design parameters,” Lab Chip, Vol. 5, p. 270-279, 2005. P. Linderholm and Ph. Renaud, “Comment on “AC frequency characteristics of coplanar impedance sensors as design parameters” by Jongin Hong, Dae Sun Yoon, Sung Kwan Kim, Tae Song Kim, Snaghyo Kin, Eugene Y. Pak and Kwangsoo No, Lab Chip, 2005, 5, 270,” Lab Chip, Vol. 5, p. 1416-1417, 2005. Tip Effect, “http://physics.stackexchange.com/questions/43068/why-is-electric-field-strong-at-sharp-edges.” Stray Capacitance, https://en.wikipedia.org/wiki/Parasitic_capacitance. Yi-Ching Kuo and Chih-Kung Lee, “Sensitivity improvement of a miniaturized label-free electrochemical biosensor by using zigzag electrode,” Doctoral Dissertation, Department of Engineering Science and Ocean Engineering, National Taiwan University, July, 2016. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59218 | - |
dc.description.abstract | 流式細胞技術於分子生物學、生理學、檢驗技術上皆扮演著舉足輕重的腳色。而其中雷射光學方式利用分析細胞通過反射或折射的螢光,常用來作為精準的單一細胞分析。但此種方式常受限於龐大的儀器體積、專業人才使用等高成本,常僅在醫療或研究機構做準確細胞篩選檢測。因此電阻抗式流式細胞技術因而被提出,用來作為體積小、操作簡易、成本低的可攜式裝置。本研究即延續已初步設計的搭載新型平面式電極的電阻抗式流式細胞技術,加以討論在交流電訊號下不同頻率對其分析不同粒子特性的影響,找出適當的使用頻寬。並且利用一系列實驗來佐證不同頻率下分析的能力。找出頻寬後,透過基板材質與不同電極設計來拓寬此使用頻寬來達到更佳的儀器使用效果。最後使用新型電極設計來進行一系列的實驗,來驗證本研究的元件,具有在高操作頻率下判斷直徑6和10微米的聚苯乙烯粒子、具-COOH基的該粒子、二氧化矽、三聚氰胺、鐵磁粒子、人急性單核性白血病细胞(THP1)等種類的能力。本研究所改良基板與電極的元件,可同時偵測粒子和細胞大小、位置、種類的資訊,來對初步疾病篩檢目的有重要的參考意義。 | zh_TW |
dc.description.abstract | Flow cytometry takes up an important role in molecular and cellular biology, physiology and diagnosis techniques. One of flow cytometry method, the laser light system, utilizes analysis on reflection and refraction of fluorescent light from a passing cell. It is always implemented as a precise single cell analysis. But this method is always constrained to high cost such as a huge equipment size and professional use. It could be only practiced in medical or research institution for accurate cell sorting and detection. Therefore, impedance flow cytometry is then proposed to be a small, easy and low-cost portable device. This research then follows the preliminarily designed impedance flow cytometry with new coplanar electrode design. It discusses the influence of device impedance spectroscopy on analyzing different particle properties by finding out an adequate operational frequency range. By experiments, its ability will be demonstrated to analyze under multi-frequencies. When finding out the frequency bandwidth, a better sensing performance of the device will be achieved by considering substrate materials and new electrode spatial designs. At last, the new device with a specific electrode design will be verified by a set of experiments. It demonstrates the ability of differentiating 6μm and 10μm plain polystyrene, carboxylated polystyrene, silica, melamine, magnetic beads and THP1 Cell. The proposed device with modified substrate and electrode design could classify bead and cell’s size, position and type, which has imperative meaning for initial disease diagnosis purpose. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:18:05Z (GMT). No. of bitstreams: 1 ntu-106-R04943173-1.pdf: 5808050 bytes, checksum: aa097bce00d840dd71912af708c0efb3 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Certificate of approval by oral committee i
Acknowledgement ii Abstract in Chinese iii Abstract in English iv Contents vi List of Figures viii Chapter 1. Introduction 1 1.1 Structure of the Thesis 1 1.2 Overview of Bio-material Sensing Technology 2 1.3 Review for Microfluidics Impedance Flow Cytometry 5 1.4 Motivation of My Work 12 Chapter 2. Theory 18 2.1 Coulter Principle 18 2.2 Developed Equivalent Circuit Model 20 2.3 Impedance Multi-Frequencies Spectroscopy 23 (1) Operational Frequency Range 23 (2) Substrate Material Effect 25 (3) Electrode Spatial Design 26 2.4 Theory of Particle Sensing 30 (1) Lock-In Amplifier 30 (2) Particle Sensing Under Multi-frequencies 32 (3) Dielectric Analysis 34 Chapter 3. Experiment 37 3.1 Device Fabrication 37 3.2 Device Design 42 (1) Overall Design 42 (2) Substrate Material Design 47 (3) Electrode Design 50 3.3 Materials and Measurement Parameters 52 3.4 Experiment Method and Setup 54 Chapter 4. Results and Discussion 60 4.1 Operational Frequency Range Simulation and Verification 60 4.2 Substrate Material Effect 67 4.3 Electrode Spatial Design Effect 73 4.4 Bead Surface and Material Effect 84 (1) Surface Effect 84 (2) Material Effect 87 Chapter 5. Conclusions 93 Reference 95 | |
dc.language.iso | en | |
dc.title | 一種微流體粒子分析元件的阻抗頻譜發展與應用 | zh_TW |
dc.title | The development of a microfluidic particle-analyzing device by impedance spectroscopy | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳奕帆(Yih-Fan Chen),李舒昇(Shu-Sheng Lee),劉怡劭(Yi-Shao Liu) | |
dc.subject.keyword | 單一細胞檢測技術,微流體,流式細胞儀,阻抗頻譜分析,電極設計, | zh_TW |
dc.subject.keyword | single cell detection,microfluidics,flow cytometry,impedance spectroscopy,electrode design, | en |
dc.relation.page | 102 | |
dc.identifier.doi | 10.6342/NTU201701263 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-11 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 5.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。