Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59192
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹承礎(Seng-Cho T. Chou)
dc.contributor.authorYu-Ting Huangen
dc.contributor.author黃郁庭zh_TW
dc.date.accessioned2021-06-16T09:17:33Z-
dc.date.available2022-07-17
dc.date.copyright2017-07-17
dc.date.issued2017
dc.date.submitted2017-07-11
dc.identifier.citation[1] 財團法人彰化基督教醫院藥劑部(2006)。安全用藥寶典 : 避免藥害之用藥須知 。臺北市:臺灣臨床藥學會。
[2] 財團法人藥害救濟基金會. (2017). 歷年(88年至106年5月)藥害救濟統計資料.
[3] 國家衛生研究院(2011)。全民健康保險研究資料庫:承保抽樣歸人檔。
[4] 陳怡秀, 林冠伶, 彭姿蓉, 吳大圩, & 張恒嘉(2013)。改善某醫院藥物不良反應通報率。藥學雜誌, 29(2),頁 127-132。
[5] 陳長安(2017)。常見藥物治療手冊。:全國藥品年鑑。
[6] 陳垣崇(2005)。降尿酸藥引發的嚴重過敏:基因標記的發現。中央研究院週報, 1028,頁 5-7。
[7] 鄧哲明(2013)。新藥的研發流程概論。科學月刊, 519,頁 188-193。
[8] Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. Paper presented at the Acm sigmod record.
[9] Alvarez-Requejo, A., Carvajal, A., Bégaud, B., Moride, Y., Vega, T., & Arias, L. H. M. (1998). Under-reporting of adverse drug reactions. European Journal of Clinical Pharmacology, 54(6), 483-488. doi: 10.1007/s002280050498
[10] Arnaud, M., Bégaud, B., Thurin, N., Moore, N., Pariente, A., & Salvo, F. (2017). Methods for safety signal detection in healthcare databases: a literature review. Expert Opinion on Drug Safety, 16(6), 721-732. doi: 10.1080/14740338.2017.1325463
[11] Hung, S.-I., Chung, W.-H., Jee, S.-H., Chen, W.-C., Chang, Y.-T., Lee, W.-R., Hu, S.-L., Wu, M.-T., Chen, G.-S., Wong, T.-W., Hsiao, P.-F., Chen, W.-H., Shih, H.-Y., Fang, W.-H., Wei, C.-Y., Lou, Y.-H., Huang, Y.-L., Lin, J.-J., & Chen, Y.-T. (2006). Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenetics and Genomics, 16(4), 297-306. doi: 10.1097/01.fpc.0000199500.46842.4a
[12] Hung, S.-I., Chung, W.-H., Liou, L.-B., Chu, C.-C., Lin, M., Huang, H.-P., Lin, Y.-L., Lan, J.-L., Yang, L.-C., Hong, H.-S., Chen, M.-J., Lai, P.-C., Wu, M.-S., Chu, C.-Y., Wang, K.-H., Chen, C.-H., Fann, C. S. J., Wu, J.-Y., & Chen, Y.-T. (2005). HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proceedings of the National Academy of Sciences of the United States of America, 102(11), 4134-4139. doi: 10.1073/pnas.0409500102
[13] Jin, H., Chen, J., He, H., Kelman, C., McAullay, D., & O'Keefe, C. M. (2010). Signaling Potential Adverse Drug Reactions from Administrative Health Databases. IEEE Transactions on Knowledge and Data Engineering, 22(6), 839-853. doi: 10.1109/tkde.2009.212
[14] Jin, H. W., Chen, J., He, H., Williams, G. J., Kelman, C., & O'Keefe, C. M. (2008). Mining unexpected temporal associations: applications in detecting adverse drug reactions. IEEE Trans Inf Technol Biomed, 12(4), 488-500. doi: 10.1109/TITB.2007.900808
[15] Julien, R. M. (2013). A primer of drug action: A concise nontechnical guide to the actions, uses, and side effects of psychoactive drugs, revised and updated: Holt Paperbacks.
[16] McCormack , M., Alfirevic , A., Bourgeois , S., Farrell , J. J., Kasperavičiūtė , D., Carrington , M., Sills , G. J., Marson , T., Jia , X., de Bakker , P. I. W., Chinthapalli , K., Molokhia , M., Johnson , M. R., O'Connor , G. D., Chaila , E., Alhusaini , S., Shianna , K. V., Radtke , R. A., Heinzen , E. L., Walley , N., Pandolfo , M., Pichler , W., Park , B. K., Depondt , C., Sisodiya , S. M., Goldstein , D. B., Deloukas , P., Delanty , N., Cavalleri , G. L., & Pirmohamed , M. (2011). HLA-A*3101 and Carbamazepine-Induced Hypersensitivity Reactions in Europeans. New England Journal of Medicine, 364(12), 1134-1143. doi: doi:10.1056/NEJMoa1013297
[17] McDowell, S. E., Coleman, J. J., & Ferner, R. E. (2006). Systematic review and meta-analysis of ethnic differences in risks of adverse reactions to drugs used in cardiovascular medicine. BMJ, 332(7551), 1177-1181. doi: 10.1136/bmj.38803.528113.55
[18] Pirmohamed, M., James, S., Meakin, S., Green, C., Scott, A. K., Walley, T. J., Farrar, K., Park, B. K., & Breckenridge, A. M. (2004). Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ, 329(7456), 15-19. doi: 10.1136/bmj.329.7456.15
[19] Reps, J. M., Garibaldi, J. M., Aickelin, U., Soria, D., Gibson, J., & Hubbard, R. (2013). Comparison of algorithms that detect drug side effects using electronic healthcare databases. Soft Computing, 17(12), 2381-2397. doi: 10.1007/s00500-013-1097-4
[20] Wilke, R., Xu, H., Denny, J., Roden, D., Krauss, R., McCarty, C., Davis, R., Skaar, T., Lamba, J., & Savova, G. (2011). The emerging role of electronic medical records in pharmacogenomics. Clinical Pharmacology & Therapeutics, 89(3), 379-386.
[21] Zorych, I., Madigan, D., Ryan, P., & Bate, A. (2013). Disproportionality methods for pharmacovigilance in longitudinal observational databases. Statistical Methods in Medical Research, 22(1), 39-56. doi: doi:10.1177/0962280211403602
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59192-
dc.description.abstract藥物的使用是為了治療疾病,但在合理用藥之情況下仍可能發生無法預期之藥物不良反應(Adverse drug reaction, ADR)。藥物不良反應的發生影響民眾的健康,即使國內提供全國藥物不良反應通報機制,仍有眾多因素造成藥物不良反應通報系統效率低,且通報過程耗費時間長。過往研究多使用藥物不良反應通報系統之資料作為分析目標,通報系統常有漏報(under reporting)的情形,且資料來源缺乏專業醫療判斷,本研究使用全民健康保險研究資料(National Health Insurance Research Database, NHIRD),資料數量龐大且皆為醫師診斷,將更具參考性。
本研究在藥物上市一段時間後,針對單一藥物成分使用時間關聯規則產生可疑不良反應清單,並使用卡方獨立性檢定協助篩選可疑不良反應清單,建立新藥上市後之藥物監視處理流程。分析結果顯示,本研究產出之藥物不良反應清單能有效排除一般性疾病,並藉由關聯規則排序及卡方檢定有效縮減可疑不良反應數量。期望在藥物不良反應被動通報前就給予相關主管機關、藥學專業人士、藥品廠商參考依據,同時提供醫師針對臺灣人口之投藥參考。
zh_TW
dc.description.abstractThe purpose of using drugs is to treat or prevent disease, but it still may have some unexpected adverse drug reactions (ADRs) which are harmful to people’s health. Though government provides National Adverse Drug Reactions Reporting System in Taiwan, many reasons make the reporting system inefficient and it take long time to report. Most of previous researches used data from National Adverse Drug Reactions Reporting System as analysis target. However, under reporting often happened and the source of the data lacked professional medical judgement. This research chooses National Health Insurance Research Database as analysis target, which is more reliable due to its huge dataset and authoritative prescription by doctors.
This research form suspect ADR lists of ingredients in single drug by temporal association rule after it appear on the market. Besides, it uses chi-square test to filter results then establish the supervise process when new drugs appear on the market. The results can exclude common disease by the suspect ADR lists efficiently and decrease amount of ADRs by the ranking of temporal association rule and chi-square test.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:17:33Z (GMT). No. of bitstreams: 1
ntu-106-R04725027-1.pdf: 832206 bytes, checksum: ece8587bd23e48843f8f666df0d602bf (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 viii
Chapter 1 緒論 1
1.1 研究背景及動機 1
1.2 研究目的 3
1.3 研究架構 3
Chapter 2 文獻探討 4
2.1 藥物不良反應自動偵測 4
2.2 全民健康保險研究資料庫 5
2.2.1 2010年承保抽樣歸人檔(LHID2010) 6
2.3 預期外之藥物不良反應 7
Chapter 3 研究方法 8
3.1 研究方法總覽 8
3.2 資料來源 9
3.2.1 全民健康保險研究資料庫 9
3.2.2 健保用藥品項 9
3.2.3 國際疾病分類代碼 ICD9 10
3.3 資料準備 10
3.3.1 就診診斷疾病與處方藥物 10
3.3.2 目標藥物 11
3.4 時間關聯規則 11
3.4.1 MUTARA 演算法 12
3.4.2 HUNT演算法 16
3.4.3 時間區間 16
3.5 疾病排除 16
3.5.1 篩選有效ICD9疾病編碼 16
3.5.2 卡方獨立性檢定 17
Chapter 4 研究成果 18
4.1 敘述性統計分析 18
4.1.1 資料總數 18
4.1.2 總人數與各藥品服藥人數 18
4.2 卡方檢定: 篩選可疑不良反應清單 20
4.3 關聯規則 22
4.3.1 allopurinol 22
4.3.2 phenytoin 25
4.3.3 carbamazepine 28
4.3.4 lamotrigine 30
4.3.5 diclofenac 33
Chapter 5 結論與建議 37
5.1 研究貢獻 37
5.2 研究限制 37
5.2.1 服藥假設與藥物選擇 37
5.2.2 疾病碼資料 37
5.2.3 專業解讀與關聯規則數量 38
5.3 未來展望 38
參考文獻 39
dc.language.isozh-TW
dc.subject時間關聯規則zh_TW
dc.subject藥物主動監視zh_TW
dc.subject藥物不良反應zh_TW
dc.subject資料探勘zh_TW
dc.subject健康資料庫zh_TW
dc.subjectpharmacovigilanceen
dc.subjectdata miningen
dc.subjectadministrative health databaseen
dc.subjecttemporal association ruleen
dc.subjectadverse drug reactionen
dc.title使用時間關聯規則偵測臺灣人口預期外藥物不良反應zh_TW
dc.titleUsing Temporal Association Rules to Detect Unexpected Adverse Drug Reactions from Taiwan Populationen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孔令傑,王貞雅
dc.subject.keyword藥物不良反應,藥物主動監視,時間關聯規則,資料探勘,健康資料庫,zh_TW
dc.subject.keywordadverse drug reaction,pharmacovigilance,temporal association rule,data mining,administrative health database,en
dc.relation.page42
dc.identifier.doi10.6342/NTU201701323
dc.rights.note有償授權
dc.date.accepted2017-07-12
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
812.7 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved