請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59172
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 于昌平(Chang-Ping Yu) | |
dc.contributor.author | Yen-Lin Kao | en |
dc.contributor.author | 高彥琳 | zh_TW |
dc.date.accessioned | 2021-06-16T09:17:10Z | - |
dc.date.available | 2020-08-21 | |
dc.date.copyright | 2020-08-21 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-17 | |
dc.identifier.citation | 1. Fernando, S., et al., Biorefineries: Current Status, Challenges, and Future Direction. Energy Fuels, 2006. 20(4): p. 1727-1737. 2. Guo, Y., et al., Mesoporous H3PW12O40-silica composite: Efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid. Applied Catalysis B: Environmental, 2008. 81(3): p. 182-191. 3. Pileidis, F.D. and M.-M. Titirici, Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass. 2016. 9(6): p. 562-582. 4. Monteiro, C.M., P.M.L. Castro, and F.X. Malcata, Metal uptake by microalgae: Underlying mechanisms and practical applications. 2012. 28(2): p. 299-311. 5. Suresh Kumar, K., et al., Microalgae – A promising tool for heavy metal remediation. Ecotoxicology and Environmental Safety, 2015. 113: p. 329-352. 6. Zhu, L., Biorefinery as a promising approach to promote microalgae industry: An innovative framework. Renewable and Sustainable Energy Reviews, 2015. 41: p. 1376-1384. 7. Khan, M.I., J.H. Shin, and J.D. Kim, The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 2018. 17(1): p. 36. 8. Zou, S., et al., Bio-oil production from sub- and supercritical water liquefaction of microalgae Dunaliella tertiolecta and related properties. Energy Environmental Science, 2010. 3(8): p. 1073-1078. 9. Katircioglu, H., et al., Screening for Antimicrobial Agent Production of Some Freshwater. Internet J Microbiol, 2006. 2. 10. Jha, D., et al., Microalgae-based Pharmaceuticals and Nutraceuticals: An Emerging Field with Immense Market Potential. 2017. 4(4): p. 257-272. 11. Borowitzka, M.A.J.J.o.A.P., Microalgae as sources of pharmaceuticals and other biologically active compounds. 2004. 7: p. 3-15. 12. Chen, W., et al., A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 2009. 77(1): p. 41-47. 13. Safi, C., et al., Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 2014. 35: p. 265-278. 14. Molina Grima, E., et al., Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 2003. 20(7): p. 491-515. 15. Gudin, C. and C. Thépenier. Bioconversion of solar energy into organic chemicals by microalgae. 1986. 16. Chisti, Y., Biodiesel from microalgae. Biotechnology Advances, 2007. 25(3): p. 294-306. 17. Uduman, N., et al., Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. 2010. 2(1): p. 012701. 18. Amaro, H.M., A.C. Guedes, and F.X. Malcata, Advances and perspectives in using microalgae to produce biodiesel. Applied Energy, 2011. 88(10): p. 3402-3410. 19. Singh, G. and S.K. Patidar, Microalgae harvesting techniques: A review. J Environ Manage, 2018. 217: p. 499-508. 20. Milledge, J. and S. Heaven, Disc Stack Centrifugation Separation and Cell Disruption of Microalgae: A Technical Note. Environment and Natural Resources Research, 2011. 1: p. 17-24. 21. Harif, T., M. Khai, and A. Adin, Electrocoagulation versus chemical coagulation: Coagulation/flocculation mechanisms and resulting floc characteristics. Water Research, 2012. 46(10): p. 3177-3188. 22. Chen, C.-Y., et al., Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technology, 2011. 102(1): p. 71-81. 23. Divakaran, R. and V.N. Sivasankara Pillai, Flocculation of algae using chitosan. Journal of Applied Phycology, 2002. 14(5): p. 419-422. 24. Pradhan, D., et al., Recent bioreduction of hexavalent chromium in wastewater treatment: A review. Journal of Industrial and Engineering Chemistry, 2017. 55: p. 1-20. 25. Renu, M. Agarwal, and K. Singh, Heavy metal removal from wastewater using various adsorbents: a review. Journal of Water Reuse and Desalination, 2016. 7(4): p. 387-419. 26. Harasim, P. and T. Filipek, Nickel in the environment. Journal of Elementology, 2015. 20: p. 525-534. 27. Prabhu, P.P. and B.J.M.W.C. Prabhu, A Review on Removal of Heavy Metal Ions from Waste Water using Natural/ Modified Bentonite. 2018. 144: p. 02021. 28. Barakat, M.A., New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 2011. 4(4): p. 361-377. 29. Rengaraj, S., K.-H. Yeon, and S.-H. Moon, Removal of chromium from water and wastewater by ion exchange resins. Journal of Hazardous Materials, 2001. 87(1): p. 273-287. 30. Abuyaghi, A. and R. El‐Bishtawi, Removal of Lead and Nickel Ions Using Zeolite Tuff. Journal of Chemical Technology and Biotechnology, 1997. 69: p. 27-34. 31. Erdem, E., N. Karapinar, and R. Donat, The removal of heavy metal cations by natural zeolites. Journal of Colloid and Interface Science, 2004. 280(2): p. 309-314. 32. Matilainen, A., M. Vepsäläinen, and M. Sillanpää, Natural organic matter removal by coagulation during drinking water treatment: A review. Advances in Colloid and Interface Science, 2010. 159(2): p. 189-197. 33. Lee, K.E., et al., Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chemical Engineering Journal, 2012. 203: p. 370-386. 34. Baskan, M.B. and A. Pala, Determination of arsenic removal efficiency by ferric ions using response surface methodology. J Hazard Mater, 2009. 166(2-3): p. 796-801. 35. Lee, Y., I.-h. Um, and J. Yoon, Arsenic(III) Oxidation by Iron(VI) (Ferrate) and Subsequent Removal of Arsenic(V) by Iron(III) Coagulation. Environmental Science Technology, 2003. 37(24): p. 5750-5756. 36. Kang, M., T. Kamei, and Y. Magara, Comparing polyaluminum chloride and ferric chloride for antimony removal. Water Research, 2003. 37(17): p. 4171-4179. 37. Naceradska, J., L. Pivokonska, and M. Pivokonsky, On the importance of pH value in coagulation. Journal of Water Supply: Research and Technology-Aqua, 2019. 68(3): p. 222-230. 38. Tang, X., et al., Chemical coagulation process for the removal of heavy metals from water: a review. Desalination and Water Treatment, 2016. 57(4): p. 1733-1748. 39. Vigneswaran, S., et al., Physicochemical Treatment Processes for Water Reuse, in Physicochemical Treatment Processes, L.K. Wang, Y.-T. Hung, and N.K. Shammas, Editors. 2005, Humana Press: Totowa, NJ. p. 635-676. 40. Kurniawan, T.A., et al., Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 2006. 118(1): p. 83-98. 41. Qdais, H.A. and H. Moussa, Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 2004. 164(2): p. 105-110. 42. Ujang, Z. and G.K. Anderson, Application of low-pressure reverse osmosis membrane for Zn2+ and Cu2+ removal from wastewater. Water Science and Technology, 1996. 34(9): p. 247-253. 43. Jiang, S., Y. Li, and B.P. Ladewig, A review of reverse osmosis membrane fouling and control strategies. Science of The Total Environment, 2017. 595: p. 567-583. 44. Tzanetakis, N., et al., Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt. Separation and Purification Technology, 2003. 30(2): p. 113-127. 45. Mohammadi, T., A. Razmi, and M. Sadrzadeh, Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination, 2004. 167: p. 379-385. 46. Lakherwal, D. Adsorption of Heavy Metals : A Review. 2014. 47. Abdulrazak, S., K. Hussaini, and H. Sani, Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit. Applied Water Science, 2016. 48. Feng, D. and C. Aldrich, Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy, 2004. 73(1): p. 1-10. 49. Gupta, V.K., et al., Biosorption of copper(II) from aqueous solutions by Spirogyra species. Journal of Colloid and Interface Science, 2006. 296(1): p. 59-63. 50. Perales-Vela, H.V., J.M. Peña-Castro, and R.O. Cañizares-Villanueva, Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 2006. 64(1): p. 1-10. 51. Kaplan, D., Absorption and adsorption of heavy metals by microalgae. Handbook of Microalgal Culture: Appl. Phycol. Biotechnol., 2013: p. 439-447. 52. Mehta, S.K. and J.P. Gaur, Removal of Ni and Cu from single and binary metalsolutions by free and immobilized Chlorella vulgaris. European Journal of Protistology, 2001. 37(3): p. 261-271. 53. Hai, F.I., K. Yamamoto, and C.-H. Lee, Membrane Biological Reactors: Theory, Modeling, Design, Management and Applications to Wastewater Reuse. 2013: IWA Publishing. 54. Pileggi, V., Investigation of the Performance of an Anaerobic Membrane Bioreactor in the Treatment of Mixed Municipal Sludge Under Ambient, Mesophilic and Thermophilic Operating Conditions. 2016, UWSpace. 55. Judd, S., The status of membrane bioreactor technology. Trends in Biotechnology, 2008. 26(2): p. 109-116. 56. Huang, Y.-B. and Y. Fu, Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chemistry, 2013. 15(5). 57. Wyman, C.E., et al., Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 2005. 96(18): p. 1959-1966. 58. Jung, S.-J., S.-H. Kim, and I.-M. Chung, Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass and Bioenergy, 2015. 83: p. 322-327. 59. He, et al., Thermochemical conversion of swine mamure: An alternative process for waste treatment and renewable energy production. Transactions of the ASAE. American Society of Agricultural Engineers, 2000. 43: p. 1827-1833. 60. Funke, A. and F. Ziegler, Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. 2010. 4(2): p. 160-177. 61. Werpy, T. and G. Petersen, Top Value Added Chemicals from Biomass: Volume I -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas. 2004: United States. 62. Isikgor, F.H. and C.R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 2015. 6(25): p. 4497-4559. 63. Altaras, N.E. and D.C. Cameron, Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Applied and environmental microbiology, 1999. 65(3): p. 1180-1185. 64. Delhomme, C., D. Weuster-Botz, and F.E. Kühn, Succinic acid from renewable resources as a C4 building-block chemical—a review of the catalytic possibilities in aqueous media. Green Chemistry, 2009. 11(1): p. 13-26. 65. Pereira, C., V. Silva, and A. Rodrigues, ChemInform Abstract: Ethyl Lactate as a Solvent: Properties, Applications and Production Processes - A Review. Green Chem., 2011. 13: p. 2658-2671. 66. Mäki-Arvela, P., et al., Production of Lactic Acid/Lactates from Biomass and Their Catalytic Transformations to Commodities. Chemical Reviews, 2014. 114(3): p. 1909-1971. 67. Erickson, B., Nelson, and P. Winters, Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnology journal, 2012. 7(2): p. 176-185. 68. Islam, s.M.R. and P.D.M.S. Abdul Munaim, Processes for the Production of Xylitol-A Review. Food Reviews International, 2012. 29. 69. Bozell, J.J., et al., Production of levulinic acid and use as a platform chemical for derived products. Resources, Conservation and Recycling, 2000. 28(3): p. 227-239. 70. Aycock, D.F., Solvent Applications of 2-Methyltetrahydrofuran in Organometallic and Biphasic Reactions. Organic Process Research Development, 2007. 11(1): p. 156-159. 71. Moens, L., Synthesis of δ-Aminolevulinic Acid, in Chemicals and Materials from Renewable Resources. 2001, American Chemical Society. p. 37-50. 72. Ertl, J., et al., Natural derivatives of diphenolic acid as substitutes for bisphenol-A. 2014. 1599(1): p. 326-329. 73. Takkellapati, S., T. Li, and M.A. Gonzalez, An Overview of Biorefinery Derived Platform Chemicals from a Cellulose and Hemicellulose Biorefinery. Clean Technol Environ Policy, 2018. 20(7): p. 1615-1630. 74. Caggiano, T.J., Microwaves in Organic and Medicinal Chemistry By C. Oliver Kappe and Alexander Stadler. (Volume 25 of Methods and Principles in Medicinal Chemistry. Edited by R. Mannhold, H. Kubinyi, and G. Folkers.) Wiley VCH, Weinheim, Germany. 2005. xii + 409 pp. 17.5 × 24.5 cm. ISBN -527-31210-2. $170.00. Journal of Medicinal Chemistry, 2005. 48(24): p. 7915-7915. 75. Panunzio, M., et al., Palladium‐Catalyzed Heteroaromatic Couplings Mediated by Microwave Irradiation. Synthetic Communications, 2007. 37: p. 4239-4244. 76. Kappe, C.O., Controlled Microwave Heating in Modern Organic Synthesis. 2004. 43(46): p. 6250-6284. 77. Herbst, A. and C. Janiak, Selective glucose conversion to 5-hydroxymethylfurfural (5-HMF) instead of levulinic acid with MIL-101Cr MOF-derivatives. New Journal of Chemistry, 2016. 40(9): p. 7958-7967. 78. Jing, Q. and X. LÜ, Kinetics of Non-catalyzed Decomposition of Glucose in High-temperature Liquid Water. Chinese Journal of Chemical Engineering, 2008. 16(6): p. 890-894. 79. Girisuta, B., L.P.B.M. Janssen, and H.J. Heeres, A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chemistry, 2006. 8(8): p. 701-709. 80. Cao, F., et al., Dehydration of cellulose to levoglucosenone using polar aprotic solvents. Energy Environmental Science, 2015. 8(6): p. 1808-1815. 81. Abdilla, R.M., C.B. Rasrendra, and H.J. Heeres, Kinetic Studies on the Conversion of Levoglucosan to Glucose in Water Using Brønsted Acids as the Catalysts. Industrial Engineering Chemistry Research, 2018. 57(9): p. 3204-3214. 82. Hamelinck, C.N., G.v. Hooijdonk, and A.P.C. Faaij, Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy, 2005. 28(4): p. 384-410. 83. Tang, Z. and J. Su, One Step Conversion of Glucose into 5-Hydroxymethylfurfural (HMF) via a Basic Catalyst in Mixed Solvent Systems of Ionic Liquid-Dimethyl Sulfoxide. Journal of Oleo Science, 2019. 68(3): p. 261-271. 84. Choudhary, V., et al., Insights into the Interplay of Lewis and Brønsted Acid Catalysts in Glucose and Fructose Conversion to 5-(Hydroxymethyl)furfural and Levulinic Acid in Aqueous Media. Journal of the American Chemical Society, 2013. 135(10): p. 3997-4006. 85. He, J., et al., Production of levoglucosenone and 5-hydroxymethylfurfural from cellulose in polar aprotic solvent–water mixtures. Green Chemistry, 2017. 19(15): p. 3642-3653. 86. Román-Leshkov, Y., et al., Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water. 2010. 49(47): p. 8954-8957. 87. Bennett, N.M., S.S. Helle, and S.J.B. Duff, Extraction and hydrolysis of levoglucosan from pyrolysis oil. Bioresource Technology, 2009. 100(23): p. 6059-6063. 88. Li, M., et al., High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/γ-valerolactone system. RSC Advances, 2017. 7(24): p. 14330-14336. 89. DiCosimo, R., et al., Industrial use of immobilized enzymes. Chemical Society Reviews, 2013. 42(15): p. 6437-6474. 90. Fachri, B.A., et al., Experimental and Kinetic Modeling Studies on the Sulfuric Acid Catalyzed Conversion of d-Fructose to 5-Hydroxymethylfurfural and Levulinic Acid in Water. ACS Sustainable Chemistry Engineering, 2015. 3(12): p. 3024-3034. 91. Girisuta, B., L.P.B.M. Janssen, and H.J. Heeres, Green Chemicals. Chemical Engineering Research and Design, 2006. 84(5): p. 339-349. 92. Rackemann, D.W. and W.O. Doherty, The conversion of lignocellulosics to levulinic acid. 2011. 5(2): p. 198-214. 93. Anderson, G., Study of Light as a parameter in the growth of algae in a Photo-Bioreactor (PBR). 2003. 94. Ito, A., et al., Biological oxidation of arsenite in synthetic groundwater using immobilised bacteria. Water Research, 2012. 46(15): p. 4825-4831. 95. Weingarten, R., et al., Selective Conversion of Cellulose to Hydroxymethylfurfural in Polar Aprotic Solvents. 2014. 6(8): p. 2229-2234. 96. Yang, J., et al., Valorization of humin as a glucose derivative to fabricate a porous carbon catalyst for esterification and hydroxyalkylation/alkylation. Waste Management, 2020. 103: p. 407-415. 97. Azizi, K., M. Keshavarz Moraveji, and H. Abedini Najafabadi, Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA. Bioresource Technology, 2017. 243: p. 481-491. 98. Rasrendra, C.B., et al., Experimental studies on the pyrolysis of humins from the acid-catalysed dehydration of C6-sugars. Journal of Analytical and Applied Pyrolysis, 2013. 104: p. 299-307. 99. van Zandvoort, I., et al., Structural characterization of 13C-enriched humins and alkali-treated 13C humins by 2D solid-state NMR. Green Chemistry, 2015. 17(8): p. 4383-4392. 100. Hadjoudja, S., V. Deluchat, and M. Baudu, Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. Journal of Colloid and Interface Science, 2010. 342(2): p. 293-299. 101. Enyidi, U., Chlorella vulgaris as Protein Source in the Diets of African Catfish Clarias gariepinus. FIshes MDPI, 2017. Fishes 2017. 102. Yee, N., J.B. Fein, and C.J. Daughney, Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption. Geochimica et Cosmochimica Acta, 2000. 64(4): p. 609-617. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59172 | - |
dc.description.abstract | 多年來,人為活動造成了許多環境問題,在許多工業行為中,重金屬為一種被廣泛應用的化學物,而其造成的污染對於生態環境是一項極大的問題。當今科學家開發了許多去除重金屬的方法,在眾多研究中,以微藻作為吸附劑去除重金屬污染已被證實具有良好的效果,為一項具備環境友善的重金屬處理方法。而近年來,利用生物質作為替代石油原料的研究日漸興盛,微藻體內所含的碳水化合物,使其成為一種可以獲得平台化合物的熱門生物質原料。因此除了能將微藻作為吸附劑外,將廢棄的微藻進行再利用,亦成為一項具有潛力的研究。 本研究以小球藻作為生物吸附劑,搭配沉浸式微藻膜生物反應槽系統對合成地下水中的重金屬鉻、鎳、銅進行吸附,並將吸附過重金屬的廢棄微藻進行資源化應用,利用微波消化與液態酸的催化,以產出平台化合物乙醯丙酸。考慮在不同溫度、反應時間與催化劑濃度下,找出可以得到乙醯丙酸最佳產率的反應條件。並探討經微波消化過後,原本存在於微藻中的重金屬在固相與液相中的分布。研究結果顯示,當反應溫度為180°C、反應時間為1小時、硫酸催化劑濃度為0.5 M,可以得到效益最大的乙醯丙酸產率,平均為5.49 % (¬± 0.179);在相同反應溫度與催化劑濃度下,將反應時間延長至2小時則可得到最大的乙醯丙酸產率為6.44 %。分析三種重金屬鉻、鎳、銅經過微波消化完成後在生成固相與液相上的分布結果,就重金屬銅的分布情況而言,在最佳條件(反應溫度180°C、反應時間1小時、硫酸催化劑濃度為0.5 M) 下進行消化後所得到的液相中,幾乎沒有銅的存在,而固體殘餘物中所含銅的量為總重金屬銅的99.80 %,表明利用微藻吸附重金屬銅,並且將其進行資源化後,重金屬銅會殘留於固相生成物中,對於乙醯丙酸產物存在的液相產生的污染較少;而對於鎳與鉻而言,因大部分的重金屬溶於液相中,因此需要近一步純化以取得乙醯丙酸。 | zh_TW |
dc.description.abstract | Over the years, human activities have caused many environmental issues. In many industrial activities, heavy metals are widely used, and the pollution from that is a serious problem for the ecological environment. Nowadays, scientists have developed many methods for removing heavy metals. In many studies, using microalgae as an adsorbent to remove heavy metal pollution has been proven to have a good effect. It is an environmentally friendly process for heavy metal treatment. Meanwhile, research on the use of biomass as a substitute for petroleum raw materials has flourished in recent years. The carbohydrates in microalgae turn them into a popular biomass raw material for obtaining platform compounds. Therefore, in addition to being able to use microalgae as an adsorbent, the reuse of discarded microalgae has also become a potential research. In this study, chlorella vulgaris was used as a biosorbent, combined with an immersed microalgae membrane bioreactor to adsorb chromium, nickel, and copper in synthetic groundwater. The waste microalgae that had adsorbed heavy metals were used for resource utilization, and microwave digestion with liquid acid is run to produce the platform compound levulinic acid. Conditions of temperature, reaction time and catalyst concentration were tested to obtain the optimal yield of levulinic acid. After microwave digestion, the distribution of heavy metals originally present in the waste microalgae was also discussed in solid residue and liquid phases products. The results of the study show that at 180°C, 1 hour, and the sulfuric acid catalyst concentration is 0.5 M, the efficient yield of levulinic acid can be obtained, with an average of 5.49% (± 0.179), and the maximum yield of levulinic acid can be achieved by extending the reaction time to 2 hours. Under the optimal conditions, there is almost no copper in the liquid phase after digestion, and the amount of copper remained in the solid residue is 99.80% of the total copper, causing less pollution to the liquid phase of the levulinic acid product. As for nickel and chromium, most of the them are soluble in the liquid phase, thus further purification is required to obtain levulinic acid. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T09:17:10Z (GMT). No. of bitstreams: 1 U0001-1408202015421400.pdf: 6855071 bytes, checksum: e42952a8ec449325fe1d63169117fb7a (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員審定書 i 致謝 iii 摘要 v Abstract vii 目錄 ix 圖目錄 xii 表目錄 xiv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻回顧 4 2.1 微藻 4 2.1.1 藻類組成 4 2.1.2 微藻收穫 5 2.2 重金屬污染的危害與處理技術 7 2.2.1 重金屬的危害 7 2.2.2 重金屬污染處理技術 8 2.3 微藻與重金屬污染物去除 12 2.3.1 微藻與金屬離子吸附關係 12 2.3.2 膜生物反應槽技術的發展 15 2.4 生物資源化 17 2.4.1 資源化的發展歷史 17 2.4.2 生物質轉化技術 17 2.4.3 平台化合物 19 2.5 藻類資源化 22 2.5.1 微波消化反應 22 2.5.2 催化劑的選擇 23 2.5.3 反應機制 24 第三章 材料與方法 31 3.1 實驗設備及藥品 31 3.1.1 實驗設備 31 3.1.2 實驗藥品 32 3.2 實驗設計與流程 34 3.3 微藻的培養與定量 36 3.3.1 微藻培養 36 3.3.2 微藻的細胞計數法 38 3.3.3 微藻乾重 40 3.4 連續流微藻膜生物反應槽 41 3.4.1 合成地下水與重金屬配方 41 3.4.2 薄膜參數 42 3.4.3 反應槽操作參數 42 3.5 微藻收集 43 3.5.1 瓶杯試驗 43 3.5.2 微藻的收集方式 44 3.6 微波消化法 45 3.6.1 小球藻的生質轉化 45 3.6.2 分析固體樣品中重金屬的前處理 46 3.6.3 分析液體樣品中重金屬的前處理 47 3.7 反應物與產物的分析方法 48 3.7.1 高效液相層析(High performance liquid chromatography, HPLC) 48 3.7.2 感應耦合電漿原子發射光譜儀(Inductively Coupled Plasma-Optical Emission Spectrometer, ICP-OES) 48 3.7.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 49 3.7.4 傅立葉紅外光譜儀(Fourier Transform Infrared Spectrometer, FTIR) 49 第四章 結果與討論 50 4.1 以沉浸式微藻膜生物反應槽去除重金屬 50 4.1.1 低壓膜微藻反應槽對合成地下水重金屬的去除結果 50 4.2 微藻的收集 54 4.3 微藻的資源化 55 4.3.1 反應時間 55 4.3.2 催化劑濃度對LA產率的影響 56 4.3.3 反應溫度對LA產率的影響 57 4.4 微藻轉化為LA的反應機制 58 4.5 微藻的型態分析 61 4.6 熱重分析 63 4.7 ATR-FTIR 64 4.8 廢棄微藻的資源化結果 66 第五章 結論與未來展望 67 5.1 結論 67 5.2 建議 68 5.3 未來展望 68 參考文獻 69 | |
dc.language.iso | zh-TW | |
dc.title | 利用微波消化法高質化含有重金屬之微藻廢棄物以生成乙醯丙酸的生質轉換 | zh_TW |
dc.title | Valorization of Heavy Metal Absorbed Microalgae Waste to Levulinic Acid Using Microwave Heating Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周佩欣(Pei-Hsin Chou),黃郁慈(Yu-Tsz Huang),廖健森(Chien-Sen Liao) | |
dc.subject.keyword | 微藻,平台化合物,微波消化反應,重金屬吸附,乙醯丙酸, | zh_TW |
dc.subject.keyword | microalgae,platform chemicals,microwave process,heavy metal adsorption,levulinic acid, | en |
dc.relation.page | 76 | |
dc.identifier.doi | 10.6342/NTU202003436 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1408202015421400.pdf 目前未授權公開取用 | 6.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。