請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5915完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許永真(Jane Yung-jen Hsu) | |
| dc.contributor.author | Chia-Mau Ni | en |
| dc.contributor.author | 倪嘉懋 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:18:19Z | - |
| dc.date.available | 2013-08-22 | |
| dc.date.available | 2021-05-16T16:18:19Z | - |
| dc.date.copyright | 2013-08-22 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | [1] M. S. Aldenderfer and R. K. Blashfield. Cluster analysis: Quantitative applications in the social sciences. Beverly Hills: Sage Publication, 1984.
[2] J. Allan, editor. Topic detection and tracking: event-based information organization. Kluwer Academic Publishers, Norwell, MA, USA, 2002. [3] J. Allan, R. Gupta, and V. Khandelwal. Temporal summaries of new topics. In Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pages 10–18. ACM, 2001. [4] J. Allan, R. Papka, and V. Lavrenko. On-line new event detection and tracking. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, pages 37–45. ACM, 1998. [5] P. Bachrach and M. S. Baratz. Power and poverty: Theory and practice. Oxford University Press, 1970. [6] D. P. Baron. Persistent media bias. Journal of Public Economics, 90(1):1–36, 2006. [7] D. Billsus and M. J. Pazzani. A hybrid user model for news story classifica- tion. COURSES AND LECTURES-INTERNATIONAL CENTRE FOR MECHANI- CAL SCIENCES, pages 99–108, 1999. [8] D.BillsusandM.J.Pazzani.Apersonalnewsagentthattalks,learnsandexplains.In Proceedings of the third annual conference on Autonomous Agents, pages 268–275. ACM, 1999. 43 [9] T. Brants, F. Chen, and A. Farahat. A system for new event detection. In Pro- ceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval, pages 330–337. ACM, 2003. [10] I. Cantador, A. Bellogin, and P. Castells. Ontology-based personalised and context- aware recommendations of news items. In Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT’08. IEEE/WIC/ACM International Conference on, vol- ume 1, pages 562–565. IEEE, 2008. [11] P.-C. Chang, M. Galley, and C. D. Manning. Optimizing chinese word segmenta- tion for machine translation performance. In Proceedings of the Third Workshop on Statistical Machine Translation, pages 224–232. Association for Computational Linguistics, 2008. [12] J.-H. Chiang and Y.-C. Chen. An intelligent news recommender agent for filtering and categorizing large volumes of text corpus. International Journal of Intelligent Systems, 19(3):201–216, 2004. [13] L.-F. Chien. Pat-tree-based keyword extraction for chinese information retrieval. In ACM SIGIR Forum, volume 31, pages 50–58. ACM, 1997. [14] H. L. Chieu and Y. K. Lee. Query based event extraction along a timeline. In Pro- ceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pages 425–432. ACM, 2004. [15] Y. Choi, Y. Jung, and S.-H. Myaeng. Identifying controversial issues and their sub- topics in news articles. In Intelligence and Security Informatics, pages 140–153. Springer, 2010. [16] R. W. Cobb and C. D. Elder. The politics of agenda-building: An alternative per- spective for modern democratic theory. The Journal of Politics, 33(4):892–915, 1971. 44 [17] A. Feng and J. Allan. Finding and linking incidents in news. In Proceedings of the sixteenth ACM conference on Conference on information and knowledge manage- ment, pages 821–830. ACM, 2007. [18] A. Feng and J. Allan. Incident threading for news passages. In Proceedings of the 18th ACM conference on Information and knowledge management, pages 1307– 1316. ACM, 2009. [19] P. Garrett and A. Bell. Media and discourse: A critical overview. Approaches to media discourse. Oxford: Blackwell, pages 1–20, 1998. [20] R. Gibson and D. Zillmann. The impact of quotation in news reports on issue per- ception. Journalism & Mass Communication Quarterly, 70(4):793–800, 1993. [21] J. Goldstein, M. Kantrowitz, V. Mittal, and J. Carbonell. Summarizing text docu- ments: sentence selection and evaluation metrics. In Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval, pages 121–128. ACM, 1999. [22] Q. He, K. Chang, and E.-P. Lim. Using burstiness to improve clustering of topics in news streams. In Data Mining, 2007. ICDM 2007. Seventh IEEE International Conference on, pages 493–498. IEEE, 2007. [23] P. Henshall and D. Ingram. The news manual (three volumes), 1992. [24] E. S. Herman and N. Chomsky. Manufacturing consent: The political economy of the mass media. Bodley Head, 2008. [25] J. Hirschberg, K. McKeown, R. Passonneau, D. K. Elson, and A. Nenkova. Do summaries help? a task-based evaluation of multi-document summarization. 2005. [26] G. Kumaran and J. Allan. Text classification and named entities for new event de- tection. In Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, pages 297–304. ACM, 2004. 45 [27] S. Lee and H.-j. Kim. News keyword extraction for topic tracking. In Networked Computing and Advanced Information Management, 2008. NCM’08. Fourth Inter- national Conference on, volume 2, pages 554–559. IEEE, 2008. [28] Z. Li, B. Wang, M. Li, and W.-Y. Ma. A probabilistic model for retrospective news event detection. In Proceedings of the 28th annual international ACM SIGIR confer- ence on Research and development in information retrieval, pages 106–113. ACM, 2005. [29] J. Liu, P. Dolan, and E. R. Pedersen. Personalized news recommendation based on click behavior. In Proceedings of the 15th international conference on Intelligent user interfaces, pages 31–40. ACM, 2010. [30] M.E.McCombsandD.L.Shaw.Theagenda-settingfunctionofmassmedia.Public opinion quarterly, 36(2):176–187, 1972. [31] K. McKeown and D. R. Radev. Generating summaries of multiple news articles. In Proceedings of the 18th annual international ACM SIGIR conference on Research and development in information retrieval, pages 74–82. ACM, 1995. [32] K. R. McKeown, R. Barzilay, D. Evans, V. Hatzivassiloglou, J. L. Klavans, A. Nenkova, C. Sable, B. Schiffman, and S. Sigelman. Tracking and summarizing news on a daily basis with columbia’s newsblaster. In Proceedings of the second in- ternational conference on Human Language Technology Research, pages 280–285. Morgan Kaufmann Publishers Inc., 2002. [33] R. Nallapati, A. Feng, F. Peng, and J. Allan. Event threading within news topics. In Proceedings of the thirteenth ACM international conference on Information and knowledge management, pages 446–453. ACM, 2004. [34] D. Radev, J. Otterbacher, A. Winkel, and S. Blair-Goldensohn. Newsinessence: summarizing online news topics. Communications of the ACM, 48(10):95–98, 2005. [35] G. Salton, A. Wong, and C.-S. Yang. A vector space model for automatic indexing. Communications of the ACM, 18(11):613–620, 1975. 46 [36] H. Toda and R. Kataoka. A clustering method for news articles retrieval system. In Special interest tracks and posters of the 14th international conference on World Wide Web, pages 988–989. ACM, 2005. [37] D. Trieschnigg and W. Kraaij. Hierarchical topic detection in large digital news archives. In Proceedings of the 5th Dutch Belgian Information Retrieval workshop, pages 55–62, 2005. [38] R. T.-H. Tsai. Chinese text segmentation: A hybrid approach using transductive learning and statistical association measures. Expert Systems with Applications, 37(5):3553–3560, 2010. [39] T.-H. Tsai, S.-H. Wu, C.-W. Lee, C.-W. Shih, and W.-L. Hsu. Mencius: A chinese named entity recognizer using the maximum entropy-based hybrid model. Inter- national Journal of Computational Linguistics and Chinese Language Processing, 9(1), 2004. [40] X. Wan and J. Yang. Collabsum: exploiting multiple document clustering for col- laborative single document summarizations. In Proceedings of the 30th annual in- ternational ACM SIGIR conference on Research and development in information retrieval, pages 143–150. ACM, 2007. [41] C. Wang, M. Zhang, L. Ru, and S. Ma. An automatic online news topic keyphrase extraction system. In Web Intelligence and Intelligent Agent Technology, 2008. WI- IAT’08. IEEE/WIC/ACM International Conference on, volume 1, pages 214–219. IEEE, 2008. [42] C.-W. Wu, R. T.-H. Tsai, and W.-L. Hsu. Semi-joint labeling for chinese named entity recognition. In Information Retrieval Technology, pages 107–116. Springer, 2008. [43] R. Yan, L. Kong, C. Huang, X. Wan, X. Li, and Y. Zhang. Timeline generation through evolutionary trans-temporal summarization. In Proceedings of the Confer- 47 ence on Empirical Methods in Natural Language Processing, pages 433–443. Asso- ciation for Computational Linguistics, 2011. [44] R. Yan, X. Wan, J. Otterbacher, L. Kong, X. Li, and Y. Zhang. Evolutionary time- line summarization: a balanced optimization framework via iterative substitution. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pages 745–754. ACM, 2011. [45] W. Yang. Chinese keyword extraction based on max-duplicated strings of the docu- ments. In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pages 439–440. ACM, 2002. [46] Y. Yang, T. Pierce, and J. Carbonell. A study of retrospective and on-line event detection. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, pages 28–36. ACM, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5915 | - |
| dc.description.abstract | 公共議程(Public Agenda)係指一系列相關議題,引發公共討論並引起社會注意。在公共議程中,受關注的議題對於議程的發展方向有較高的影響力。然而,議題的顯著程度可能受到媒體的刻意操作,偏頗的媒體往往將違反其立場或利益的議題邊緣化。
本論文介紹一個透過分析新聞文章中的引述句以在公共議程中自動化探勘議題的方法。新聞中的引述句記錄了公眾人物與領域專家的意見,我們藉由將引述句依主題分群,以辨識出新聞文章中被大量辯論的議題。為了增進引述句的分群效果,我們提出「議題顯著詞」來代表每個引述句的主題。 我們收集了一份關於「核四停建」公共議程的新聞文章語料庫以驗證方法的效能,該公共議程是 2013 年台灣社會高度關注的議程之一。我們人工標記出新聞文章中的顯著議題,並將引述句依議題分類。我們使用這份語料庫來驗證引述句分群與議題探勘的效能。 | zh_TW |
| dc.description.abstract | A public agenda is a set of issues or concerns that merit public attention. The issues that attract a lot of public attention are influential to the direction of the public agenda. However, the salience of issues might be purposely transferred by the media. Biased news organizations marginalize or filter issues that are against their positions or private interests.
In this thesis we propose a method to automatically mine salient issues from news articles. Quotations in news articles describe comments from public figure and domain experts. Our method for issue mining is based on quotation analysis. By clustering quotations according to their subjects, we identify issues that are widely debated on. We introduce issue significant terms to improve the performance of the method. To evaluate the performance of issue mining, we compile a corpus of news articles about the public agenda on Lungmen Nuclear Power Plant. The public agenda is a focus for concern in Taiwan in 2013. We manually identify the ground truth of salient issues in the corpus and categorize quotations according to these issues. The performance of quotation clustering and issue mining is evaluated with the ground truth. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:18:19Z (GMT). No. of bitstreams: 1 ntu-102-R00922033-1.pdf: 877780 bytes, checksum: 2e4e2eef483ff26a57ba0e46012ca068 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivation ................................. 1 1.2 Objectives ................................. 2 2 Background 3 2.1 Preliminaries ............................. 3 2.1.1 Public Agenda ............................ 3 2.1.2 Quotations in News Articles .............. 5 2.2 Related Work .............................. 8 2.2.1 Topic Detection and Tracking ............ 8 2.2.2 News Summarization ...................... 9 2.2.3 Mining Meaningful Targets from News ..... 10 3 Issue Mining with Quotation Analysis 13 3.1 The Issue Mining Problem .................. 13 3.2 Proposed Solution ......................... 14 3.3 Quotation Detection ....................... 15 3.3.1 Task Definition .......................... 15 3.3.2 Pattern-Based Quotation Detection ........ 16 3.4 Issue Clustering .......................... 17 3.4.1 Preprocessing ............................ 18 3.4.2 Vector Space Model ....................... 19 3.4.3 Issue Significant Term Selection ......... 20 3.4.4 Hierarchical Agglomerative Clustering .... 23 3.5 Issue Cluster Labeling .................... 24 4 Evaluation 27 4.1 Data Preparation .......................... 27 4.1.1 Online News Articles ..................... 27 4.1.2 Salient Issue Annotation ................. 28 4.1.3 Issue Category Annotation ................ 29 4.2 Evaluate Issue Clustering ................. 30 4.2.1 Evaluation Metrics ....................... 30 4.2.2 Compared Methods ......................... 32 4.2.3 Experiment Results ....................... 32 4.3 Evaluate Salient Issue Mining ............. 34 4.3.1 Evaluation Criteria ...................... 35 4.3.2 Compared Methods ......................... 35 4.3.3 Experiment Results ....................... 36 5 Conclusion 39 5.1 Summary of Contribution .................... 40 5.2 Future Work ................................ 40 Bibliography 43 | |
| dc.language.iso | en | |
| dc.subject | 新聞自動摘要 | zh_TW |
| dc.subject | 新聞 | zh_TW |
| dc.subject | 議題探勘 | zh_TW |
| dc.subject | 公共議程 | zh_TW |
| dc.subject | 信息抽取 | zh_TW |
| dc.subject | 子議題探勘 | zh_TW |
| dc.subject | information extraction | en |
| dc.subject | issue mining | en |
| dc.subject | subtopic mining | en |
| dc.subject | public agenda | en |
| dc.subject | news summarization | en |
| dc.subject | news | en |
| dc.title | 公共議程新聞的自動化議題探勘 | zh_TW |
| dc.title | Mining Salient Issues from News Articles on Public Agendas | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡宗翰(Richard Tzong-Han Tsai),陳信希(Hsin-Hsi Chen),張嘉惠(Chia-Hui Chang),劉昭麟(Chao-Lin Liu) | |
| dc.subject.keyword | 新聞,議題探勘,公共議程,新聞自動摘要,子議題探勘,信息抽取, | zh_TW |
| dc.subject.keyword | news,issue mining,public agenda,news summarization,subtopic mining,information extraction, | en |
| dc.relation.page | 48 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 857.21 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
