請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5912完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 關秉宗 | |
| dc.contributor.author | Zi-Yi Tsai | en |
| dc.contributor.author | 蔡孜奕 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:18:17Z | - |
| dc.date.available | 2014-01-27 | |
| dc.date.available | 2021-05-16T16:18:17Z | - |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-12-17 | |
| dc.identifier.citation | 柯勇 (2002) 植物生理學。
柳榗 (1966) 臺灣產松柏類植物地理之研究。臺灣省林業試驗所研究報告。122:35頁。 張志遠 (2008) 臺灣南仁山亞熱帶雨林三種樹種的樹液流通量與風速及其他環境因子之關係。國立臺灣大學生態學與演化生物學研究所碩士論文。 陳正和 (2004) 臺灣地區三種具代表性的杉樹-臺灣杉、臺灣雲杉和臺灣冷杉。臺灣林業 30:73-77。 曾彥學 (1991) 臺灣中部沙里仙溪集水區職群生態之研究II 臺灣雲杉森林動態及族群結構之研究。國立臺灣大學森林環境暨資源學研究所碩士論文。 曾涵 (2011) 利用樹液流法測量溪頭柳杉人工林之蒸散狀況及變異。國立臺灣大學森林環境暨資源學研究所碩士論文。 劉靜榆 (1991) 臺灣中部沙里仙溪集水區職群生態之研究I 植群分析與森林演替之研究。國立臺灣大學森林環境暨資源學研究所碩士論文。 鍾年鈞 (1998) 全球變遷:塔塔加高山生態系長期生態研究-塔塔加高山植群之研究(二)。行政院國家科學委員會專題研究計畫成果報告。 藍永翔 (2010) 臺灣雲杉葉部碳氮之分布與動態。國立臺灣大學森林環境暨資源學研究所碩士論文。 羅勻謙 (2004) 鴛鴦湖地區臺灣扁柏森林生態系蒸散作用之研究。國立東華大學自然資源管理研究所碩士論文。 Campbell, G. S. and Norman, J. M. (1998). An introduction to environmental biophysics. Čermak, J., Kučera, J., Bauerle, W. L., Phillips, N. and Hinckley, T. M. (2007). Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees. Tree Physiology 27: 181-198. Clausnitzer, F., Kostner, B., Schwarzel, K. and Bernhofer, C. (2011). Relationships between canopy transpiration, atmospheric conditions and soil water availability—Analyses of long-term sap-flow measurements in an old Norway spruce forest at the Ore Mountains/Germany. Agricultural and Forest Meteorology 151: 1023-1034. Deckmyn, G., Verbeeck, H., Op De Beeck, M., Vansteenkiste, D., Steppe, K. and Ceulemans, R. (2008). ANAFORE: a stand-scale process-based forest model that includes wood tissue development and labile carbon storage in trees. Ecological Modelling 215: 345-368. Delzon, S., Sartore, M., Granier, A. and Loustau, D. (2004). Radial profiles of sap flow with increasing tree size in maritime pine. Tree Physiology 24: 1285-1293. Dye, P., Olbrich, B. and Poulter, A. (1991). The influence of growth rings in Pinus patula on heat pulse velocity and sap flow measurement. Journal of Experimental Botany 42: 867-870. Goldstein, G., Andrade, J., Meinzer, F., Holbrook, N., Cavelier, J., Jackson, P. and Celis, A. (1998). Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell and Environment 21: 397-406. Granier, A. (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology 3: 309-320. Granier, A., Loustau, D. and Breda, N. (2000). A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Annals of Forest Science 57: 755-765. Herzog, K., Thum, R., Kronfus, G., Heldstab, H. J. and Hasler, R. (1998). Patterns and mechanisms of transpiration in a large subalpine Norway spruce (Picea abies (L.) Karst.). Ecological Research 13: 105-116. Holbrook, N. and Sinclair, T. (1992). Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage. Plant, Cell and Environment 15: 401-409. James, S. A., Clearwater, M. J., Meinzer, F. C. and Goldstein, G. (2002). Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiology 22: 277-283. Kravka, M., Krejzar, T. and Čermak, J. (1999). Water content in stem wood of large pine and spruce trees in natural forests in central Sweden. Agricultural and Forest Meteorology 98: 555-562. Lange, O. L., Nobel, P. S., Osmond, C. B. and Ziegler, H. (1982). Physiological Plant Ecology II.Water Relations and Carbon Assimilation. Lee, P. W. and Eom, Y. (1988). Anatomical comparison between compression wood and opposite wood in a branch of Korean pine (Pinus koraiensis). IAWA Bulletin 9: 275-284. Lloyd, J., Grace, J., Miranda, A., Meir, P., Wong, S., Miranda, H., Wright, I., Gash, J. and McIntyre, J. (1995). A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant, Cell and Environment 18: 1129-1145. Loustau, D., Berbigier, P., Roumagnac, P., Arruda-Pacheco, C., David, J., Ferreira, M., Pereira, J. and Tavares, R. (1996). Transpiration of a 64-year-old maritime pine stand in Portugal. Oecologia 107: 33-42. Lu, P., Biron, P., Breda, N. and Granier, A. (1995).Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in the Vosges mountains: water potential, stomatal conductance and transpiration. In Annales des sciences forestieres, Vol. 52, 117-129: EDP Sciences. Nadezhdina, N. (2010). Integration of water transport pathways in a maple tree: responses of sap flow to branch severing. Annals of Forest Science 67: 107. O'Brien, J., Oberbauer, S. and Clark, D. (2004). Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. Plant, Cell and Environment 27: 551-567. Philip, J. R. (1966). Plant water relations: some physical aspects. Annual Review of Plant Physiology 17: 245-268. Phillips, N., Bergh, J., Oren, R. and Linder, S. (2001). Effects of nutrition and soil water availability on water use in a Norway spruce stand. Tree Physiology 21: 851-860. Phillips, N., Nagchaudhuri, A., Oren, R. and Katul, G. (1997). Time constant for water transport in loblolly pine trees estimated from time series of evaporative demand and stem sapflow. Trees 11: 412-419. Phillips, N., Ryan, M., Bond, B., McDowell, N., Hinckley, T. and Čermak, J. (2003). Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology 23: 237-245. Pieruschka, R., Huber, G. and Berry, J. A. (2010). Control of transpiration by radiation. Proceedings of the National Academy of Sciences 107: 13372-13377. Pinheiro, J. C. and Bates, D. M. (2000). Mixed-effects models in S and S-PLUS Plomion, C., Leprovost, G. and Stokes, A. (2001). Wood formation in trees. Plant Physiology 127: 1513-1523. Ran, J.H., Wei, X.X. and Wang, X.Q. (2006). Molecular phylogeny and biogeography of Picea (Pinaceae): Implications for phylogeographical studies using cytoplasmic haplotypes. Molecular Phylogenetics and Evolution 41: 405-419. Raviv, M. and Blom, T. J. (2001). The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Scientia Horticulturae 88: 257-276. Sadler, E. J. and Evans, D. E. (1989). Vapor pressure deficit calculations and their effect on the combination equation. Agricultural and Forest Meteorology 49: 55-80. Saugier, B., Granier, A., Pontailler, J., Dufrene, E. and Baldocchi, D. (1997). Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods. Tree Physiology 17: 511-519. Schulte, P. J. and Brooks, J. R. (2003). Branch junctions and the flow of water through xylem in Douglas‐fir and ponderosa pine stems. Journal of Experimental Botany 54: 1597-1605. Schulze, E. D., Čermak, J., Matyssek, M., Penka, M., Zimmermann, R., Vasicek, F., Gries, W. and Kučera, J. (1985). Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees—a comparison of xylem flow, porometer and cuvette measurements. Oecologia 66: 475-483. Si, J. H., Feng, Q., Zhang, X. Y., Chang, Z. Q., Su, Y. H. and Xi, H. Y. (2007). Sap flow of Populus euphratica in a desert riparian forest in an extreme arid region during the growing season. Journal of Integrative Plant Biology 49: 425-436. Smith, D. and Allen, S. (1996). Measurement of sap flow in plant stems. Journal of Experimental Botany 47: 1833-1844. Taiz, L., and Zeiger, E. (2006). Plant Physiology. Tan, C., Black, T. and Nnyamah, J. (1978). A simple diffusion model of transpiration applied to a thinned Douglas-fir stand. Ecology: 1221-1229. Tateishi, M., Kumagai, T. o., Utsumi, Y., Umebayashi, T., Shiiba, Y., Inoue, K., Kaji, K., Cho, K. and Otsuki, K. (2008). Spatial variations in xylem sap flux density in evergreen oak trees with radial-porous wood: comparisons with anatomical observations. Trees 22: 23-30. Taylor, R. J., Patterson, T. F. and Harrod, R. J. (1994). Systematics of Mexican spruce: revisited. Systematic Botany 19. Tognetti, R., d'Andria, R., Morelli, G., Calandrelli, D. and Fragnito, F. (2004). Irrigation effects on daily and seasonal variations of trunk sap flow and leaf water relations in olive trees. Plant and Soil 263: 249-264. Tsuruta, K., Kume, T., Komatsu, H., Higashi, N., Umebayashi, T., Kumagai, T. o. and Otsuki, K. (2010). Azimuthal variations of sap flux density within Japanese cypress xylem trunks and their effects on tree transpiration estimates. Journal of Forest Research 15: 398-403. Waring, R. and Running, S. (1976).Water uptake, storage and transpiration by conifers: A physiological model. In Water and Plant Life. Waring, R. H. and Running, S. W. (2007). Forest ecosystems: analysis at multiple scales. Wilson, B. F. and Archer, R. R. (1977). Reaction wood: induction and mechanical action. Annual Review of Plant Physiology 28: 23-43. Wullschleger, S. D., Meinzer, F. and Vertessy, R. (1998). A review of whole-plant water use studies in tree. Tree Physiology 18: 499-512. Xia, G., Kang, S., Li, F., Zhang, J. and Zhou, Q. (2008). Diurnal and seasonal variations of sap flow of Caragana korshinskii in the arid desert region of north‐west China. Hydrological Processes 22: 1197-1205. Zanne, A., Sweeney, K., Sharma, M. and Orians, C. (2006). Patterns and consequences of differential vascular sectoriality in 18 temperate tree and shrub species. Functional Ecology 20: 200-206. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5912 | - |
| dc.description.abstract | 林木水分利用是森林生態系水循環中一個重要的途徑,亦可影響植物之光合作用及蒸散作用狀況。臺灣雲杉(Picea morrisonicola)為雲杉屬中分布於最南端之樹種,為瞭解其水分利用狀況,本實驗於臺灣中部塔塔加鞍部選擇3株樣木,從2010年4月至2012年3月進行樹液流監測,探究(1)不同樹幹方位(東、西、南及北側)及邊材深度對樹液流速之影響;(2)水蒸氣壓差對於林木整體樹液流之影響及(3)樹幹底層與頂層之樹液流遲滯時間及儲存水利用情形。
本研究結果顯示: (1)樹幹東側之樹液流速最大,西側則最小,東側約為西側之1.5-3.6倍,因此若僅以單側樹液流速估算樣木樹液流量會造成約19-52 %之差異。 (2)樹液流速隨邊材深度增加而減少之幅度不明顯,自邊材深度0-2 cm處到深度4-6 cm處有先降後升之現象,使不同邊材深度估算之樣木樹液流量差異普遍在10 %以內。 (3)臺灣雲杉於春季時月均樹液流速為1.33-2.87 cm3m-2s-1,夏季時為1.01-2.85 cm3m-2s-1,冬季為0.44-0.92 cm3m-2s-1,夏季流速最大值可達16.25 cm3m-2s-1。 (4)樹液流速與水蒸氣壓差之關係為一飽和曲線,藉由非線性混合效應模式分析擬合三株樣木白晝平均樹液流速與白晝平均水蒸氣壓差之結果,可知白晝平均水蒸氣壓差達0.43 kPa時,白晝平均樹液流速即達飽和(10.74 cm3m-2s-1)。 (5)時間遲滯方面,經交叉相關函數分析後,底層樹液流較頂層樹液流晚約0-30分鐘。 (6)樣木於夏季每日平均水分消耗量為7.86-12.34 kg,冬季每日平均消耗量為4.7-7.26 kg。 由上述結果做討論比較,塔塔加鞍部臺灣雲杉樹液流在樹幹不同方位之變異較不同邊材深度變異大,且每日蒸散之水分與同處於雲霧帶之鴛鴦湖臺灣扁柏(Chamaecyparis obtusa var. formosana)相當。同株林木樹幹兩高度間之樹液流遲滯時間與每日水分消耗量較某些溫帶針葉樹種少。 | zh_TW |
| dc.description.abstract | Tree water usage is an important component in forest ecosystem’s water cycle, and is related to plant photosynthesis and transpiration. The main objective of this study is to understand the water usage characteristics of Taiwan spruce (Picea morrisonicola), the southernmost distributed species of the genus. The sap fluxes at different stem heights, directions, and sapwood depths of three Taiwan spruces located in the Tatachia area of central Taiwan were monitored from April, 2010 to March, 2012. This study also examined how temperature, solar radiation, and vapor pressure deficit (VPD) influenced the species sap fluxes.
The results showed that: (1) The east side had the highest sap flux density, whereas the west had the lowest. The east side sap flux density was 1.5-3.6 times larger than that of west side. Thus, the overall sap flux density would be under-estimated by 19-52 % if based only on the west-side measurements. (2) Minor differences in sap flux density at different sapwood depths were found. Thus, the overall sap flux density would be over-estimated by less than 10% if based solely on the outermost sapwood area measurements. (3) The monthly average of daily sap flux density was about 1.33-2.87 cm3m-2s-1 in spring, 1.01-2.85 cm3m-2s-1 in summer, and 0.44-0.92 cm3m-2s-1 in winter. In summer, the sap flux density could reach upto 16 cm3m-2s-1. (4) The relationship between the mean daytime sap flux density and the mean daytime VPD resembled a 1st-order asymptotic curve. Based on a nonlinear mixed-effects modeling approach, the mean daytime sap flux density would reach a mean saturation value of 10.74 cm3m-2s-1, when the mean daytime VPD reaches 0.43 kPa. (5) Based on cross-correlation function analysis, the sap flux time lag between the basal part and the canopy was about 0-30 minutes. (6) Based on the diurnal changes in sap flux density measured in the basal part and the canopy, the average daily water consumption was about 7.86-12.34 kg in summer, and about 4.7-7.26 kg in winter. Overall, the variations in aspects were highter than in sapwood depths for Taiwan spruce. Compared to the previously documented results for the conifer species located in the temperate regions, the monitored Taiwan spruces consumed less water and had less lagged time between different stem heights, even with larger diameters and taller heights. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:18:17Z (GMT). No. of bitstreams: 1 ntu-102-R98625010-1.pdf: 9719627 bytes, checksum: 61b0ad07f23c8e63b5d397bf2528c487 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員審定書………………………………………………………………i
致謝……………………………………………………………………………………ii 中文摘要……………………………………………………………………………iii 英文摘要………………………………………………………………………………v 目錄………………………………………………………………………………………vii 表目錄…………………………………………………………………………………x 圖目錄…………………………………………………………………………………xi 第一章 緒論………………………………………………………………………………1 1.1 前言…………………………………………………………………………………1 1.2 研究目的…………………………………………………………………………2 第二章 前人研究………………………………………………………………………3 2.1 樹液流………………………………………………………………………………3 2.2 影響樹液流之因子…………………………………………………………3 2.2.1 邊材範圍………………………………………………………………………5 2.2.2 木質部狀況對樹液流之影響………………………………………………6 2.2.3 環境因子對樹液流之影響……………………………………………………7 2.3 樹液流之時間遲滯………………………………………………………………8 2.4 儲存水之利用……………………………………………………………………8 2.5 國內樹液流研究…………………………………………………………………9 2.6 雲杉屬植物之概述……………………………………………………………10 第三章 研究材料與方法……………………………………………………………11 3.1 研究材料………………………………………………………………………11 3.2 樣區概述………………………………………………………………………12 3.2.1 地點…………………………………………………………………………12 3.2.2 氣候…………………………………………………………………………13 3.2.3 植被…………………………………………………………………………13 3.3 樹液流測量方式………………………………………………………………14 3.3.1 樣木選擇及樣點設置……………………………………………………………14 3.3.2 熱消散探針法…………………………………………………………………………16 3.3.3 樹液流探針之架設……………………………………………………………17 3.4 氣象資料之收集與補遺……………………………………………………18 3.5 資料處理與統計方法…………………………………………………………19 3.5.1 資料之整理與取捨………………………………………………………………19 3.5.2 水蒸氣壓差之計算………………………………………………………………19 3.5.3 樹液流速之計算……………………………………………………………………20 3.5.4 不同方位樹液流速之比較……………………………………………………20 3.5.5 時間遲滯之計算………………………………………………………………………20 3.5.6 不同深度樹液流速之比較……………………………………………………21 3.5.7 不同方位及深度對於樹液流量估算之誤差與平均樹液流速計算……21 3.5.8 樹液流速與VPD之關係…………………………………………………25 3.5.9 儲存水利用計算………………………………………………………………26 第四章 結果…………………………………………………………………………28 4.1 樹液流速於不同方位之變異……………………………………………………28 4.2 樹液流速於不同深度之變異……………………………………………………32 4.3 方位及深度變異與樹液流量估算之誤差……………………………………38 4.4 不同季節之樹液流狀況……………………………………………………40 4.5 樣木TM1冠層微氣候概況…………………………………………………43 4.6 樹液流速與VPD之關係……………………………………………………45 4.7 樹液流時間遲滯與儲存水利用狀況…………………………………………48 第五章 討論………………………………………………………………………53 5.1 樹液流速於不同方位角之變異………………………………………………53 5.2 樹液流速於不同深度之變異……………………………………………………54 5.3 不同季節之樹液流狀況……………………………………………………………55 5.4 冠層微氣候概況…………………………………………………………………………57 5.5 樹液流速與VPD之關係……………………………………………………………58 5.6 不同高度樹液流之時間遲滯與儲存水之利用狀況…………………59 第六章 結論………………………………………………………………………64 參考文獻………………………………………………………………………………65 附錄………………………………………………………………………………………72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 時間遲滯 | zh_TW |
| dc.subject | 塔塔加鞍部 | zh_TW |
| dc.subject | 臺灣雲杉 | zh_TW |
| dc.subject | 樹液流 | zh_TW |
| dc.subject | 水蒸氣壓差 | zh_TW |
| dc.subject | 儲存水 | zh_TW |
| dc.subject | vapor pressure deficit | en |
| dc.subject | time lag | en |
| dc.subject | storage water | en |
| dc.subject | Tatachia area | en |
| dc.subject | Taiwan spruce | en |
| dc.subject | sap flow | en |
| dc.title | 臺灣中部塔塔加地區臺灣雲杉老熟林樹液流特性 | zh_TW |
| dc.title | Sap Flux Characteristics of Old-growth Taiwan Spruce(Picea morrisonicola Hayata)in Tataka Region, Central Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 久米朋宣(Tomonori Kume) | |
| dc.contributor.oralexamcommittee | 郭耀綸,張世杰 | |
| dc.subject.keyword | 塔塔加鞍部,臺灣雲杉,樹液流,水蒸氣壓差,儲存水,時間遲滯, | zh_TW |
| dc.subject.keyword | Tatachia area,Taiwan spruce,sap flow,vapor pressure deficit,storage water,time lag, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-12-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 9.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
