Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5910
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周崇熙
dc.contributor.authorTzu-Sheng Chuangen
dc.contributor.author莊子昇zh_TW
dc.date.accessioned2021-05-16T16:18:16Z-
dc.date.available2015-08-17
dc.date.available2021-05-16T16:18:16Z-
dc.date.copyright2013-08-17
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation陳青聖。台灣地區養雞場沙門氏菌之分離與鑑定。碩士論文。國立屏東科技大學獸醫學系。2010。
李美鳳。革蘭氏陰性桿菌第一類型integron之研究。博士論文。高雄醫學大學醫學研究所。2009。
翁嘉伶。台灣傳統市場有色肉雞沙門氏菌血清型及抗藥性之研究。碩士論文。國立中興大學獸醫公共衛生學研究所。2009。
陳怡君。沙門氏桿菌抗藥性基因型之分析。碩士論文。國立屏東科技大學獸醫學系。2008。
謝志宏。種禽及孵化但之沙門氏桿菌的疫情與抗藥性分析。碩士論文。國立嘉義大學獸醫學系研究所。2006。
邱蘭皓。台灣南部地區雞場沙門氏菌流行病學研究:血清型、抗藥性及基因型分析。碩士論文。國立嘉義大學獸醫學系研究所。2004。
郭乃維。家禽屠宰場與市售屠體沙氏桿菌與彎曲桿菌汙染情形調查。碩士論文。國立台灣大學獸醫學研究所。2002。
洪惠雯、邱怡昌、王金和。孵化場絨毛分離之沙門氏菌抗生素抗藥性變化。臺灣獸醫學雜誌。2009。35(1):9-14。
周崇熙,蔡向榮。台灣肉雞沙氏桿菌、彎曲桿菌之盛行率及抗菌劑感受性調查。中華獸醫誌。2001。27: 27-38。
林正忠,劉哲宏,張照勤,李維誠,劉正義,陳德勛。不同來源之豬隻沙氏桿菌流行病學調查:探討台灣居民感染人畜共通沙氏桿菌症風險。台灣公共衛生雜誌2008。27: 243-49。
林正忠,郭俊緯,張照勤,王裕智,沈瑞鴻,葉光勝,陳德勛。上市白肉雞與仿土雞之沙氏桿菌分離率與抗藥性比較。臺灣獸醫學雜誌。2008。34(4):217-25。
Angkititrakul S, Chomvarin C, Chaita T, Kanistanon K, Waethewutajarn S. Epidemiology of antimicrobial resistance in Salmonella isolated from pork, chicken meat and humans in Thailand. Southeast Asian J Trop Med Public Health. 2005; 36 (6): 1510-5.
Arun KB. Foodborne microbial pathogens: mechanisms and pathogens. Springer. New York. 2008. 201-16.
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997; 25 (17): 3389-402.
Bangtrakulnonth A, Pornreongwong S, Pulsrikarn C, Sawanpanyalert P, Hendriksen RS, Lo Fo Wong DM and Aarestrup FM. Salmonella serovars from humans and other sources in Thail, 1993-2002. Emerg Infect Dis. 2004; 10 (1): 131-36.
Baudart J, Lemarchand K, Brisabois A, Lebaron P. Diversity of Salmonella strains isolated from the aquatic environment as determined by serotyping and amplification of the ribosomal DNA spacer regions. Appl Environ Microbiol. 2000; 66 (4): 1544-52.
Bauer JAW, Kirdy WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standard single disc method. Am j Clin Pathol. 1996; (45): 493-96.
Berrang ME, Ladely SR, Simmons M, Fletcher DL, Fedorka-Cray PJ. Antimicrobial resistance patterns of salmonella from retail chicken. Int J Poult Sci. 2006; 5 (4): 351-54.
Bonifield HR, Hughes KT. Flagellar phase variation in Salmonella enterica is mediated by a posttranscriptional control mechanism. J Bacteriol. 2003; 185 (12): 3567-74.
Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. Salmonella nomenclature. J Clin Microbiol. 2000; 38 (7): 2465-7.
Burdett V. Purification and characterization of tet (M), a protein that renders ribosomes resistant to tetracycline. J Biol Chem. 1991; 266 (5): 2872-7.
Carattoli A. Importance of integrons in the diffusion of resistance. Vet Res. 2001; 32 (3-4): 243-59.
Carlson SA, Bolton LF, Briggs CE, Hurd HS, Sharma VK, Fedorka-Cray PJ, Jones BD. Detection of multiresistant Salmonella typhimurium DT104 using multiplex and fluorogenic PCR. Mol Cell Probes. 1999; 13 (3): 213-22.
Casin I, Breuil J, Brisabois A, Moury F, Grimont F, Collatz E. Multidrug-resistant human and animal Salmonella typhimurium isolates in France belong predominantly to a DT104 clone with the chromosome- and integron-encoded beta-lactamase PSE-1. J Infect Dis. 1999; 179 (5): 1173-82.
Chang LL, Chang TM, Chang CY. Variable gene cassette patterns of class 1 integron associated drug-resistant Escherichia coli in Taiwan. Kaohsiung J Med Sci. 2007; 23 (6): 273-80.
Chen H, Fraser AD, Yamazaki H. Evaluation of the toxicity of Salmonella selective media for shortening the enrichment period. Int J Food Microbiol. 1993; 18 (2): 151-59.
Chiou CS, Lin JM, Chiu CH, Chu CH, Chen SW, Chang YF, Weng BC, Tsay JG, Chen CL, Liu CH, Chu C. Clonal dissemination of the multi-drug resistant Salmonella enterica serovar Braenderup, but not the serovar Bareilly, of prevalent serogroup C1 Salmonella from Taiwan. BMC Microbiol. 2009; 9: 264.
Chiu CH, Lin TY and Ou JT. Prevalence of the virulence plasmids of nontyphoid Salmonella in the serovars isolated from humans and their association with bacteremia. Microbiol Immunol 1999; 43 (9): 899-903.
Chiu CH, Su LH, Hung CC, Chen KL, Chu C. Prevalence and antimicrobial susceptibility of serogroup D nontyphoidal Salmonella in a university hospital in Taiwan. J Clin Microbiol. 2004; 42 (1): 415-7.
Collis CM, Hall RM. Expression of antibiotic resistance genes in the integrated cassettes of integrons. Antimicrob Agents Chemother. 1995; 39 (1): 155-62.
Collis CM, Kim MJ, Partridge SR, Stokes HW, Hall RM. Characterization of the class 3 integron and the site-specific recombination system it determines. J Bacteriol. 2002; 184 (11): 3017-26.
Cox NA, Berrang ME, Cason JA. Salmonella penetration of egg shells and proliferation in broiler hatching eggs-a review. Poult Sci. 2000;79 (11): 1571-74.
Davies RH, Wray C. An approach to reduction of Salmonella infection in broiler chicken flocks through intensive sampling and identification of cross contamination hazards in commercial hatcheries. Int J Food Microbiol. 1994; 24(1-2): 147-60.
Dera-Tomaszewska B. Salmonella serovars isolated for the first time in Poland, 1995-2007. Int J Occup Med Environ Health. 2012 ; 25(3): 294-303.
Faldynova M, Pravcova M, Sisak F, Havlickova H, Kolackova I, Cizek A, Karpiskova R, Rychlik I. Evolution of antibiotic resistance in Salmonella enterica serovar typhimurium strains isolated in the Czech Republic between 1984 and 2002. Antimicrob Agents Chemother. 2003; 47 (6): 2002-5.
Fernandes SA, Tavechio AT, Ghilardi AC, Dias AM, Almeida IA and Melo LC.
Salmonella serovars isolated from humans in Sao Paulo State, Brazil, 1996-2003. Rev Inst Med Trop Sao Paulo. 2006; 48 (4): 179-84.
Fluit AC, Schmitz FJ. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis. 1999; 18 (11): 761-70.
Folkesson A, Löfdahl S, Normark S. The Salmonella enterica subspecies I specific centisome 7 genomic island encodes novel protein families present in bacteria living in close contact with eukaryotic cells. Res Microbiol. 2002; 153(8): 537-45.
Frana TS, Carlson SA, Griffith RW. Relative distribution and conservation of genes encoding aminoglycoside-modifying enzymes in Salmonella enterica serotype typhimurium phage type DT104. Appl Environ Microbiol. 2001; 67 (1): 445-8.
Gebreyes WA, Thakur S, Davies PR, Funk JA, Altier C. Trends in antimicrobial resistance, phage types and integrons among Salmonella serotypes from pigs, 1997-2000. J Antimicrob Chemother. 2004; 53 (6): 997-1003.
Giedraitienė A, Vitkauskienė A, Naginienė R, Pavilonis A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas). 2011; 47 (3): 137-46.
Glynn MK, Bopp C, Dewitt W, Dabney P, Mokhtar M, Angulo FJ. Emergence of multidrug-resistant Salmonella enterica serotype typhimurium DT104 infections in the United States. N Engl J Med. 1998; 338 (19): 1333-8.
Goldstein C, Lee MD, Sanchez S, Hudson C, Phillips B, Register B, Grady M, Liebert C, Summers AO, White DG, Maurer JJ. Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob Agents Chemother. 2001; 45 (3): 723-6.
Hansson K, Sköld O, Sundström L. Non-palindromic attl sites of integrons are capable of site-specific recombination with one another and with secondary targets. Mol Microbiol. 1997; 26 (3): 441-53.
Hansson K, Sundström L, Pelletier A, Roy PH. IntI2 integron integrase in Tn7. J Bacteriol. 2002; 184 (6): 1712-21.
Hall RM, Collis CM. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol. 1995; 15 (4):593-600.
Hall RM. Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. Ciba Found Symp. 1997; 207: 192-202.
Hoorfar J and Baggesen DL. Importance of pre-enrichment media for isolation of
Salmonella spp. from swine and poultry. FEMS Microbiol Lett. 1998;169 (1): 125-30.
Holt PS, Chaubal LH. Detection of motility and putative synthesis of flagellar proteins in Salmonella pullorum cultures. J Clin Microbiol. 1997; 35 (4): 1016-20.
Hsu SC, Chiu TH, Pang JC, Hsuan-Yuan CH, Chang GN, Tsen HY. Characterisation of antimicrobial resistance patterns and class 1 integrons among Escherichia coli and Salmonella enterica serovar Choleraesuis strains isolated from humans and swine in Taiwan. Int J Antimicrob Agents. 2006; 27 (5): 383-91.
Kim A, Lee YJ, Kang MS, Kwag SI, Cho JK. Dissemination and tracking of Salmonella spp. in integrated broiler operation. J Vet Sci. 2007; 8 (2): 155-61.
Kudaka J, Itokazu K, Taira K, Iwai A, Kondo M, Susa T, Iwanaga M. Characterization of Salmonella isolated in Okinawa, Japan. Jpn J Infect Dis. 2006; 59(1): 15-9.
Lapierre L, San Martín B, Araya-Jordán C, Borie C. Comparison of integron-linked antibiotic resistance genes in strains of Salmonella spp. isolated from swine in Chile in 2005 and 2008. Can J Microbiol. 2010; 56 (6): 515-21.
Lauderdale TL, Aarestrup FM, Chen PC, Lai JF, Wang HY, Shiau YR, Huang IW, Hung CL; TSAR hospitals. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan. Diagn Microbiol Infect Dis. 2006; 55 (2): 149-55.
Lee CY, Chiu CH, Chuang YY, Su LH, Wu TL, Chang LY, Huang YC, Lin TY. Multidrug resistant non typhoid Salmonella infections in a medical center. J Microbiol Immunol Infect. 2002; 35 (2): 78-84.
Lee MF, Chen YH, Peng CF. Molecular characterisation of class 1 integrons in Salmonella enterica serovar Choleraesuis isolates from southern Taiwan. Int J Antimicrob Agents. 2009; 33 (3): 216-22.
Lee LA, Puhr ND, Maloney EK, Bean NH, Tauxe RV. Increase in antimicrobial resistant Salmonella infections in the United States, 1989-1990. J Infect Dis. 1994; 170 (1): 128-34.
Lévesque C, Piché L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother. 1995 ; 39 (1): 185-91.
Levy SB. Active efflux mechanisms for antimicrobial resistance. Antimicrob Agents Chemother. 1992; 36 (4): 695-703.
Madsen L, Aarestrup FM, Olsen JE. Characterisation of streptomycin resistance determinants in Danish isolates of Salmonella Typhimurium. Vet Microbiol. 2000; 75 (1): 73-82.
Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O'Brien SJ, Jones TF, Fazil A, Hoekstra RM. The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis. 2010; 50 (6): 882-9.
Mazel D, Dychinco B, Webb VA, Davies J. A distinctive class of integron in the Vibrio cholerae genome. Science. 1998; 280 (5363): 605-8.
Mazel D. Integrons: agents of bacterial evolution. Nat Rev Microbiol. 2006; 4 (8): 608-20.
Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. Food-related illness and death in the United States. Emerg Infect Dis. 1999; 5 (5): 607-25.
M'ikanatha NM, Sandt CH, Localio AR, Tewari D, Rankin SC, Whichard JM, Altekruse SF, Lautenbach E, Folster JP, Russo A, Chiller TM, Reynolds SM, McDermott PF. Multidrug-resistant Salmonella isolates from retail chicken meat compared with human clinical isolates. Foodborne Pathog Dis. 2010; 7 (8): 929-34.
Myint MS, Johnson YJ, Tablante NL and Heckert RA. The effect of pre-enrichment protocol on the sensitivity and specificity of PCR for detection of naturally contaminated Salmonella in raw poultry compared to conventional culture. Food Microbiol. 2006; 23 (6): 599-604.
Nayak R, Kenney PB. Screening of Salmonella isolates from a turkey production facility for antibiotic resistance. Poult Sci. 2002; 81 (10): 1496-1500.
Namata H, Welby S, Aerts M, Faes C, Abrahantes JC, Imberechts H, Vermeersch K, Hooyberghs J, Méroc E, Mintiens K. Identification of risk factors for the prevalence and persistence of Salmonella in Belgian broiler chicken flocks. Prev Vet Med. 2009; 90 (3-4): 211-22.
Nemergut DR, Martin AP, Schmidt SK. Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl Environ Microbiol. 2004; 70 (2): 1160-8.
Ng LK, Martin I, Alfa M, Mulvey M. Multiplex PCR for the detection of tetracycline resistant genes. Mol Cell Probes. 2001; 15 (4): 209-15.
Oh JY, MS Kang, BK An, Song EA, Kwon JH, YK Kwon. Occurrence of purulent arthritis broilers vertically infected with Salmonella enterica serovar Enteritidis in Korea. Poult Sci. 2010; 89 (10): 2116-22.
Osman KM, Yousef AM, Aly MM, Radwan MI. Salmonella spp. infection in imported 1-day-old chicks, ducklings, and turkey poults: a public health risk. Foodborne Pathog Dis. 2010; 7 (4): 383-90.
Peirano G, Agersø Y, Aarestrup FM, dos Reis EM, dos Prazeres Rodrigues D. Occurrence of integrons and antimicrobial resistance genes among Salmonella enterica from Brazil. J Antimicrob Chemother. 2006; 58 (2): 305-9.
Recchia GD, Hall RM. Gene cassettes: a new class of mobile element. Microbiology. 1995; 141 ( Pt 12): 3015-27.
Roberts MC. Update on acquired tetracycline resistance genes. FEMS Microbiol Lett. 2005; 245 (2): 195-203.
San Martín B, Lapierre L, Cornejo J, Bucarey S. Characterization of antibiotic resistance genes linked to class 1 and 2 integrons in strains of Salmonella spp. isolated from swine. Can J Microbiol. 2008; 54 (7): 569-76.
Sandvang D, Aarestrup FM, Jensen LB. Characterisation of integrons and antibiotic resistance genes in Danish multiresistant Salmonella enterica Typhimurium DT104. FEMS Microbiol Lett. 1998; 160 (1): 37-41.
Schoeni JL, Glass KA, McDermott JL, Wong AC. Growth and penetration of Salmonella enteritidis, Salmonella heidelberg and Salmonella typhimurium in eggs. Int J Food Microbiol. 1995; 24 (3): 385-96.
Speer BS, Salyers AA. Novel aerobic tetracycline resistance gene that chemically modifies tetracycline. J Bacteriol. 1989; 171 (1): 148-53.
Stokes HW, Hall RM. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol. 1989; 3 (12): 1669-83.
Su LH, Chiu CH, Chu C, Ou JT. Antimicrobial resistance in nontyphoid Salmonella serotypes: a global challenge. Clin Infect Dis. 2004; 39 (4): 546-51.
Tajbakhsh M, Hendriksen RS, Nochi Z, Zali MR, Aarestrup FM, Garcia-Migura L. Antimicrobial resistance in Salmonella spp. recovered from patients admitted to six different hospitals in Tehran, Iran from 2007 to 2008. Folia Microbiol (Praha). 2012; 57 (2): 91-7.
Threlfall EJ. Antimicrobial drug resistance in Salmonella: problems and 83 perspectives in food- and water-borne infections. FEMS Microbiol Rev. 2002; 26 (2): 141-8.
Toro CS, Farfán M, Contreras I, Flores O, Navarro N, Mora GC, Prado V. Genetic analysis of antibiotic-resistance determinants in multidrug-resistant Shigella strains isolated from Chilean children. Epidemiol Infect. 2005; 133 (1): 81-6.
Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, Casadesús J, Platt DJ, Olsen JE. Host adapted serotypes of Salmonella enterica. Epidemiol Infect. 2000; 125 (2): 229-55.
Van Essen-Zandbergen A, Smith H, Veldman K, Mevius D. Occurrence and characteristics of class 1, 2 and 3 integrons in Escherichia coli, Salmonella and Campylobacter spp. in the Netherlands. J Antimicrob Chemother. 2007; 59 (4): 746-50.
Vila J, Marcos A, Marco F, Abdalla S, Vergara Y, Reig R, Gomez-Lus R, Jimenez de Anta T. In vitro antimicrobial production of beta-lactamases, aminoglycoside modifying enzymes, and chloramphenicol acetyltransferase by and susceptibility of clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 1993; 37 (1): 138-41.
Wang YC, Yeh KS, Chang CC, Hsuan SL, Chen TH. Fluoroquinolone-resistant Salmonella sp. in carcasses. Emerg Infect Dis. 2006; 12 (2): 351-2.
White PA, McIver CJ, Rawlinson WD. Integrons and gene cassettes in the Enterobacteriaceae. Antimicrob Agents Chemother. 2001; 45 (9): 2658-61.
Wilson IG. Salmonella and campylobacter contamination of raw retail chickens from different producers: a six year survey. Epidemiol Infect. 2002; 129 (3): 635-45.
Yan SS, Pendark ML, Abela-Ridder B, Punderson JW, Fedoeko DP and Foley SL. An overview of salmonella typing public health perspectives. Applied Immunol Rev. 2004; (3): 189-204.
Yu CY, Chu C, Chou SJ, Chao MR, Yeh CM, Lo DY, Su YC, Horng YM, Weng BC, Tsay JG, Huang KC. Comparison of the association of age with the infection of Salmonella and Salmonella enterica Serovar Typhimurium in Pekin ducks and Roman geese. Poult Sci. 2008; 87 (8): 1544-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5910-
dc.description.abstract沙門氏菌是重要的人畜共通傳染疾病,在飼養環境中很難被清除,其原因是由於許多無症狀的帶原動物藉由糞便間歇性排菌。又因廣泛使用抗菌劑,造成沙門氏菌的抗藥性增加,目前已出現有抗藥性細菌在人畜之間傳播。細菌抗藥性的產生可能是由於染色體的突變,抑或是抗藥性質體或者轉位子的存在加速抗藥性基因散佈。近幾年來又有新的抗藥性基因移動模式被提出,此模式為integron。本研究於2011-2012年間,蒐集雞隻及其環境來源沙門氏菌共22株,探討菌株是否含有第一型integron及其相關抗藥特性。調查結果發現,一日齡雛雞沙門氏菌均無偵測出integron,而大於一日齡雞隻及環境樣本則能檢出integron,檢出率分別為50 %(3/6)與75 %(6/8)。抗藥性基因方面,具有integron的菌株至少能檢測出三種抗藥性基因,而無integron菌株僅一株能檢測出三種抗藥性基因。一日齡雛雞及大於一日齡雞隻以TEM(57 %, 8/14)檢出率最高;環境樣本以dfrA1(63 %, 5/8)及PSE(63 %, 5/8)檢出率最高。在菌株抗藥性方面,具有Integron菌株至少對五種抗菌劑有抗藥性,一日齡雛雞及大於一日齡雞隻以Ampicillin(86 %, 12/14)抗藥性最高;環境樣本則以Ampicillin、Oxytetracycline及Tetracycline抗藥性最高,佔88 %(7/8)。本研究以統計方式分析出一日齡雛雞的沙門氏菌其多重抗藥性,低於來自飼養環境的沙門氏菌(P<0.05)。可能原因是由於家禽飼養的過程中廣泛使用抗菌劑,使環境中的沙門氏菌抗藥性愈趨嚴重。另外,具integron菌株呈現多重抗藥性的比例遠高於不具integron菌株,顯示integron與多重抗藥性有密切關係。zh_TW
dc.description.abstractSalmonella is an important zoonotic pathogen that is difficult to control in food animal environment. However abuses of several drugs for the treatment of Salmonella infection had resulted in increment of antimicrobial resistance. Recently, there has been emergence of antimicrobial resistance in zoonotic diseases. In pathogenic bacteria, their drug resistance may be procurement by mutation or the transfer of plasmid or transposon. In recent year, many studies have demonstrated mobile DNA elements with a specific structure which obtains or exchanges the antibiotic resistance genes these elements that have been termed integrons.Samples for this study were collected from 2011 to 2012 from chicken and environment in Chicken farms and about 22 bacterial strains were isolated. Further studies on understanding the process of antimicrobial resistance and class 1 integron. The results have shown that no class 1 integron was detected in day old chicks. Chickens and environment samples can be detected integron, the detection rate was 50 % (3/6) and 75 % (6/8). The resistance genes: Integron-positive isolates was capable of detecting at least three types of resistance genes, integron-negative isolates only one was able to detect three types of resistance genes. Day-old chicks and chickens were the highest detection rate of TEM (57 %, 8/14). The highest detection rate of environment sample was dfrA1 (63 %, 5/8) and PSE (63 %, 5/8). About antimicrobial resistance, Integron-positive isolates have at least five antimicrobial resistance. Day-old chicks and chickens were the highest detection rate of Ampicillin (86%, 12/14). Ampicillin、oxytetracycline and tetracycline of environment sample get 88 % (7/8) of resistance. The result of statistical analysis is day-old chicks of resistance Salmonella lower than other raising environments (P<0.05). Due to the poultry process, the widespread use of antibacterial agents, increasingly resistant Salmonella. Furthermore, The integron-postive strains showed multi-resistance is much higher than the proportion of integron-negative strains. Which shows integron and multi-resistance have close relatationshipen
dc.description.provenanceMade available in DSpace on 2021-05-16T16:18:16Z (GMT). No. of bitstreams: 1
ntu-102-R99629036-1.pdf: 2161472 bytes, checksum: 3bbc240d92e7a29e79c6ce9fd361203a (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝… i
摘要… iii
ABSTRACT iv
目錄… vi
表次… ix
圖次… x
第一章 緒言.. 1
第二章 文獻探討 3
第一節 沙門氏菌簡介 3
2.1.1 沙門氏菌命名與分類 3
2.1.2 沙門氏菌之型態與特性 4
第二節 沙門氏菌分離與鑑定 6
2.2.1 前增菌培養(pre-enrichment) 6
2.2.2 選擇性增菌培養(selective enrichment) 6
2.2.3 選擇性鑑別培養(selective isolation) 7
2.2.4 沙門氏菌之生化學 8
2.2.5 沙門氏菌血清學鑑定 8
第三節 沙門氏菌之流行病學 10
2.3.1 沙門氏菌症 10
2.3.2 人類沙門氏菌之流性病學 10
2.3.3 家禽沙門氏菌症與公共衛生的關係 11
第四節 沙門氏菌之抗藥性問題 14
第五節 沙門氏菌抗藥性基因傳播 17
2.5.1 整合子與基因片匣基本特徵及種類 18
2.5.2 Integron之流行病學調查 19
2.5.3 基因卡匣之流行病學調查 21
第三章 材料與方法 23
第一節 採樣流程與方法 23
3.1.1 檢體處理 23
第二節 沙門氏菌之分離與生化鑑定 25
3.2.1 沙門氏菌之分離培養 25
3.2.2 沙門氏菌之生化鑑定 25
3.2.3 沙門氏菌血清鑑定 26
第三節 沙門氏菌感受性試驗 29
第四節 以聚合酶酵素鏈鎖反應檢測抗藥性基因 30
3.4.1 Genomic DNA 萃取流程 30
3.4.2 抗藥性基因隻之偵測 31
3.4.3 PCR產物電泳 34
3.4.4 基因序列電泳分析 34
第五節 以巢式聚合酶酵素鏈鎖反應檢測抗藥性基因是否存在於integron 35
3.5.1 First round PCR 35
3.5.2 使用Gel/PCR DNA Fragments Extraction kit 35
3.5.3 Second round PCR(nested PCR) 36
第六節 統計方法 37
第四章 結果… 38
第一節 沙門氏菌分離株血清型的分布 39
第二節 沙門氏菌分離株之藥物感受性試驗結果 40
第三節 沙門氏菌分離株之抗藥性基因偵測 42
第五章 討論.. 46
第一節 雞場沙門氏菌之汙染率討論 46
第二節 沙門氏菌之血清型分佈 49
第三節 雞隻及環境分離株之抗藥性 52
第四節 雞隻及環境分離株之抗藥性基因 55
第六章 結論.. 59
第七章 參考文獻 61
Table 1 Reference inhibition zone for antimicrobial resistance test of each tested drug. 72
Table 2 Primer sequences and annealing temperatures used in the PCR reactions. 73
Table 3 Percentage of susceptibility over drugs for Salmonella at chicken farms 74
Table 4 Antimicrobial reisitance of 14 Salmonella from day-old chicks and chickens 75
Table 5 Antimicrobial resistance of 16 Salmonella from day-old chicks and raising environment. 76
Table 6 Antimicrobial resistance of 14 Salmonella from chickens and raising environment. 77
Table 7 Multidrug-resistant Salmonella isolates from day-old chicks and chickens 78
Table 8 Multidrug-resistant Salmonella isolates from day-old chicks and raising environment 78
Table 9 Association between antibiotic susceptibility profile and integrons in 22 isolates 79
Fig 1. PCR amplification of class 1 integrons among different serotypes of Salmonella 80
Fig 2. Detection of aadA gene in 14 Salmonella isolate from chicken 80
Fig 3. Detection of dfrA1 gene in 14 Salmonella isolate from chicken 81
Fig 4. Detection of PSE gene in 14 Salmonella isolate from chicken 81
Fig 5. Detection of Sul gene in 14 Salmonella isolate from chicken 82
Fig 6. Detection of TEM gene in 14 Salmonella isolate from chicken. 82
Fig 7. Detection of tetA gene in 14 Salmonella isolate from chicken 83
Fig 8. Detection of tetB gene in 14 Salmonella isolate from environment. 83
Fig 9. Detection of aadA gene in 8 Salmonella isolate from environment 84
Fig 10. Detection of dfrA1 gene in 8 Salmonella isolate from environment. 84
Fig 11. Detection of PSE gene in 8 Salmonella isolate from environment 85
Fig 12. Detection of Sul gene in 8 Salmonella isolate from environment 85
Fig 13 Detection of TEM gene in 8 Salmonella isolate from environment 86
Fig 14. Detection of tetA gene in 8 Salmonella isolate from environment 86
Fig 15. Detection of tetB gene in 8 Salmonella isolate from environment 87
Fig 16. 2.0 kb cassette array DNA sequence 88
Fig 17. Detection resistance genes from 22 isolates 89
dc.language.isozh-TW
dc.subject整合子zh_TW
dc.subject抗藥性zh_TW
dc.subject雞隻zh_TW
dc.subject沙門氏菌zh_TW
dc.subjectantimicrobial resistanceen
dc.subjectintegronen
dc.subjectsalmonellaen
dc.subjectchickenen
dc.title雞隻及其飼養環境來源沙門氏菌抗藥特性調查zh_TW
dc.titleCharacterization of Antimicrobial Resistance in Salmonella from Chicken and Its Raising Environmenten
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡向榮,張紹光,沈瑞鴻,郭鴻志
dc.subject.keyword抗藥性,雞隻,沙門氏菌,整合子,zh_TW
dc.subject.keywordantimicrobial resistance,chicken,salmonella,integron,en
dc.relation.page89
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-15
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf2.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved