請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59090
標題: | 大規模線性分類資料低階多項式映射中雜湊函數之應用 Hash Functions for Polynomial Feature Mapping in Large Scale Linear Classification |
作者: | Xiaocong Zhou 周驍聰 |
指導教授: | 林智仁(Chih-Jen Lin) |
關鍵字: | 低階多項式映射,雜湊函數, low-degree polynomial mapping,hash functions, |
出版年 : | 2017 |
學位: | 碩士 |
摘要: | Nonlinear mappings have long been used in data classification to handle linearly inseparable problems. Low-degree polynomial mappings are a widely used one among them, which enjoys less time and space consumption and may sometimes achieve accuracy close to that of using highly nonlinear kernels. However, the explicit form of polynomially mapped data for large data sets can also meet memory or computational difficulties. To solve this, hash functions like murmur and fnv hash are used in some packages like vowpal wabbit to have flexible memory usage. In this thesis, we propose a new hash function which is faster and could achieve the same performance. The results are validated in experiments on many datasets. |
URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59090 |
DOI: | 10.6342/NTU201701597 |
全文授權: | 有償授權 |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 241.91 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。