Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59083
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪淑蕙(Shu-Huei Hung)
dc.contributor.authorWeiwei Wangen
dc.contributor.author王葳葳zh_TW
dc.date.accessioned2021-06-16T09:15:50Z-
dc.date.available2022-07-27
dc.date.copyright2017-07-27
dc.date.issued2017
dc.date.submitted2017-07-17
dc.identifier.citationAucan, J. & Ardhuin, F., 2013. Infragravity waves in the deep ocean: An upward revision, Geophys. Res. Lett., 40(13), 3435-3439.
Bensen, G.D., Ritzwoller, M.H., Barmin, M.P., Levshin, A.L., Lin, F., Moschetti, M.P., Shapiro, N.M. & Yang, Y., 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements, Geophys. J. Int., 169(3), 1239–1260.
Bensen, G.D., Ritzwoller, M.H. & Shapiro, N.M., 2008. Broadband ambient noise surface wave tomography across the United States, J. Geophys. Res., 113(B5), B05306, doi:10.1029/2007JB005248.
Bodin, T., & M. Sambridge, 2009. Seismic tomography with the reversible jump algorithm. Geophys. J. Int., 178(3), 1411–1436.
Bodin, T., Sambridge, M., Tkalčić, H., Arroucau, P., Gallagher, K. & Rawlinson, N., 2012. Transdimensional inversion of receiver functions and surface wave dispersion. J. Geophys. Res., 117, B02301, doi:10.1029/2011JB008560.
Campillo, M. & Paul, A., 2003. Long-range correlations in the diffuse seismic coda, Science, 299(5606), 547-549.
Cessaro, R.K., 1994. Sources of primary and secondary microseisms. Bull. seism. Soc. Am., 84(1), 142-148.
Chen, Y.N., Gung, Y., You, S.H., Hung, S.-H., Chiao, L.-Y., Huang, T.-Y., Chen, Y.-L., Liang, W.-T., & Jan, S., 2011. Characteristics of short period secondary microseisms (SPSM) in Taiwan: The influence of shallow ocean strait on SPSM, Geophys. Res. Lett., 38(4), doi:10.1029/2010GL046290.
Chin, S.-J., Lin, J.-Y., Chen, Y.-F., Wu, W.-N. & Liang C.-W., 2016. Transition of the Taiwan-Ryukyu collision-subduction process as revealed by ocean-bottom seismometer observations, J. Asian Earth Sci., 128: 149-157.
Chou, H. C., Kuo, B.-Y., Hung, S.-H., Chiao, L.-Y., Zhao, D.P. & Wu, Y.-M., 2006. The Taiwan‐Ryukyu subduction‐collision complex: Folding of a viscoelastic slab and the double seismic zone, J. Geophys. Res.: Solid Earth, 111(B4), B04410, doi:10.1029/2005JB003822.
Crawford, W.C., Webb, S.C. & Hildebrand, J.A., 1991. Seafloor compliance observed by long‐period pressure and displacement measurements, J. Geophys. Res.: Solid Earth, 96(B10), 16151-16160.
Crawford, W., Ballu, V., Bertin, X. & Karpytchev, M., 2015. The sources of deep ocean infragravity waves observed in the North Atlantic Ocean, J. Geophys. Res.: Oceans, 120(7): 5120-5133.
Ekstrom, G., Abers, G. & Webb, S., 2009. Determination of surface-wave phase velocities across USArray from noise and Aki’s spectral formulation, Geophys. Res. Lett., 36, L18301, doi:10.1029/2009GL039131.
Gerstoft, P. & Bromirski., P.D., 2016. “Weather bomb” induced seismic signals, Science, 353(6302): 869-870.
Harmon, N., Forsyth, D. & Webb, S., 2007. Using ambient seismic noise to determine short-period phase velocities and shallow shear velocities in young oceanic lithosphere, Bull. seism. Soc. Am., 97, 2024–2039.
Harmon, N., Henstock, T., Srokosz, M., Tilmann, F., Rietbrock, A. & Barton, P., 2012. Infragravity wave source regions determined from ambient noise correlation, Geophys. Res. Lett., 39, L04604, doi:10.1029/2011GL050414.
Harmon, N., Henstock, T., Tilmann, F., Rietbrock, A. & Barton, P., 2012. Shear velocity structure across the Sumatran Forearc-Arc, Geophys. J. Int, 189(3), 1306–1314, doi: 10.1111/j.1365-246X.2012.05446.x
Hasselmann, K., 1963. A statistical analysis of the generation of microseisms. Rev. Geophys., 1(2), 177-210.
Herbers, T.H.C, Elgar, S. & Guza, R.T., 1995. Generation and propagation of infragravity waves, J. Geophys. Res.: Oceans, 100(C12), 24863-24872.
Huang, H.-H., 2007. Seismotectonics of northeastern Taiwan: Structural characteristics of a transitional area from waning collision to subduction and post-collisional extension, M.S. thesis.
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M. & Hsieh, H.-H., 2014. Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth planet. Sci. Lett., 392, 177-191.
Klingelhoefer F., Lee, C.-S., Lin, J.-Y. & Sibuet, J.-C., 2009. Structure of the southernmost Okinawa Trough from reflection and wide-angle seismic data. Tectonophysics, 466(3), 281-288.
Kuo, B.-Y., Chi W.-C., Lin, C.-R., Chang, T.-Y., Collins, J. & Liu, C.-S., 2009. Two-station measurement of Rayleigh-wave phase velocities for the Huatung basin, the westernmost Philippine Sea, with OBS: implications for regional tectonics, Geophys. J. Int, 179(3), 1859-1869.
Kuo, B.-Y., Wang, C.-C., Lin S.-C., Lin, C.-R., Chen, P.-C., Jang, J.-P. & Chang, H.-K., 2012. Shear-wave splitting at the edge of the Ryukyu subduction zone, Earth planet. Sci. Lett., 355, 262-270.
Kuo, B.-Y., Webb, S.C., Lin, C.R., Liang, W.-T., & Hsiao, N.-C., 2014. Removing infragravity‐wave induced noise from Ocean Bottom Seismographs (OBS) data deployed offshore of Taiwan, Bull. seism. Soc. Am., 104, 1674–1684, doi:10.1785/0120130280.
Kuo, B.-Y., W. C. Crawford, S. C. Webb, C.-R. Lin, T.-C. Yu & Chen, L., 2015. Faulting and hydration of the upper crust of the SW Okinawa Trough during continental rifting: Evidence from seafloor compliance inversion, Geophys. Res. Lett., 42, 4809–4815, doi:10.1002/ 2015GL064050.
Kuo-Chen H., Wu, F.T. & Roecker S.W., 2012. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets, J. Geophys. Res.: Solid Earth, 117(B6), B06306, doi:10.1029/2011JB009108.
Lin, C.-R., Kuo, B.-Y., Liang, W.-T., Chi, W.-C., Huang, Y.-C., Collins, J. & Wang, C.-Y., 2010. Ambient noise and teleseismic signals recorded by ocean-bottom seismometers offshore eastern Taiwan. Terr. Atmos. Ocean., 21(5): 743-755.
Liu, C.-S., Schnürle, P., Wang, Y., Chung, S.-H., Chen, S.-C., & Hsiuan, T.-H., 2006. Distribution and Characters of Gas Hydrate Offshore of Southwestern Taiwan. Terr. Atmos. Ocean. Sci., 17, 615-644.
Lin, F.C., Ritzwoller, M.H., Townend, J., Bannister, S. & Savage, M.K., 2007. Ambient noise Rayleigh wave tomography of New Zealand, Geophys. J. Int., 170(2), 649–666.
Lin, Y.-W., 2013. Structure of the subduction zone south of Taiwan, M.S. thesis.
Lobkis, O.I. & Weaver, R.L., 2001. On the emergence of the Green’s function in the correlations of a diffuse field, J. acoust. Soc. Am., 110, 3011–3017.
Longuet-Higgins, M.S., 1950. A theory of the origin of microseisms, Phil. Trans. R. Soc. Lond., 243(857), 1–35.
Longuet-Higgins, M.S., Stewart, R.W., 1962 Radiation stress and mass transport in gravity waves, with application to ‘surf beats’. J. Fluid Mech., 13(04), 481-504.
Luo, Y.H., Xu, Y.X. & Yang, Y.J., 2012. Crustal structure beneath the Dabie orogenic belt from ambient noise tomography, Earth planet. Sci. Lett., 313, 12–22.
Luo, Y.H., Xu, Y.X. & Yang, Y.J., 2013. Crustal radial anisotropy beneath the Dabie orogenic belt from ambient noise tomography, Geophys. J. Int., 195(2), 1149–1164.
McIntosh K., Nakamura Y., Wang T.-K., Shih R.-C., Chen A. & Liu C.-S., 2005. Crustal-scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics, 401(1), 23-54.
Menke W. Geophysical data analysis: Discrete inverse theory. Academic press, 2012.
Munk, Walter H., 1950. Origin and generation of waves, Proceedings 1st International Conference on Coastal Engineering, Long Beach, California: ASCE, pp. 1–4, ISSN 2156-1028.
Pacheco, C. & Snieder, R., 2005. Time-lapse travel time change of multiply scattered acoustic waves, J. acoust. Soc. Am., 118(3), 1300-1310.
Peterson, J., 1993. Observations and modeling of seismic background noise.
Ramsey, L. A., Hovius, N., Lague, D. & Liu C.-S., 2006. Topographic characteristics of the submarine Taiwan Orogeny, J. Geophys. Res., 111(F2), F02009, doi:10.1029/2005JF000314.
Roux, P., Sabra, K.G., Kuperman, W.A. & Roux, A., 2005. Ambient noise cross correlation in free space: theoretical approach, J. acoust. Soc. Am., 117, 79–84.
Nakamura, M., 2004. Crustal deformation in the central and southern Ryukyu arc estimated from GPS data, Earth Planet. Sci. Lett., 217, 389–398.
Shapiro, N.M., Campillo, M., 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophys. Res. Lett., 31(7).
Shapiro, N.M., Campillo, M., Stehly, L., Ritzwoller, M.H., 2005. High-resolution surface wave tomography from ambient seismic noise, Science, 307, 1615–1618.
Sibuet, J. C., B. Deffontaines, S. K. Hsu, N. Thareau, J. P. Le Formal, C. S. Liu, and ACT party, 1998. Okinawa trough backarc basin: Early tectonic and magmatic evolution, J. Geophys. Res., 103(B12), 30245–30267.
Stehly, L., Campillo, M., Shapiro, N.M., 2006. A study of the seismic noise from its long‐range correlation properties, J. Geophys. Res.: Solid Earth, 111(B10), B10306.
Suppe J., 1981. Mechanics of mountain building and metamorphism in Taiwan, Mem. Geol. Soc. China, 4(6), 67-89.
Symonds, G., Huntley, D.A. & Bowen, A.J., 1982. Two-dimensional surf beat: Long wave generation by a time-varying breakpoint, J. Geophys. Res.: Oceans, 87(C1), 492-498.
Teng, L. S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan, Tectonophysics, 183(1-4), 57-76.
Teng, L. S., Lee, C.-T., Peng, C.-H., Chen, W.-F. & Chu, C.-J., 2001. Origin and geological evolution of the Taipei basin, northern Taiwan, Western Pacific Earth Sciences, 1(2), 115-142.
Tian, Y. & Ritzwoller, M.H., 2015. Directionality of ambient noise on the Juan de Fuca plate: Implications for source locations of the primary and secondary microseisms, Geophys. J. Int., 201(1), 429-443.
Tsai, V.C., 2009. On establishing the accuracy of noise tomography traveltime measurements in a realistic medium, Geophys. J. Int., 178(3), 1555–1564.
Wang, T.K., McIntosh, K., Nakamura, Y., Liu, C.S. & Chen, H.W., 2001. Velocityinterface structure of the southwestern Ryukyu subduction zone from EW9509- 1 OBS/MCS data, Mar. Geophys. Res. 22(4), 265-287.
Wapenaar, K., Draganov, D., Snieder R., Campman, X. & Verdel, A., 2010. Tutorial on seismic interferometry: Part 1 — Basic principles and applications, Geophysics, 75(5), 75A195-75A209.
Wang, K., Luo, Y. & Yang, Y., 2016. Correction of phase velocity bias caused by strong directional noise sources in high-frequency ambient noise tomography: a case study in Karamay, China, Geophys. J. Int., 205(2), 715-727.
Webb, S.C., Zhang, X. & Crawford, W., 1991. Infragravity waves in the deep ocean. J. Geophys. Res., 96(C2), 2723-2736.
Webb, S.C., 1998. Broadband seismology and noise under the ocean. Rev. Geophys., 36(1), 105-142.
Webb, S. C., 2007. The Earth’s ‘hum’ is driven by ocean waves over the continental shelves, Nature, 445, 754-756.
Webb, S. & Crawford, W.C., 2010. Shallow-water broadband OBS seismology, Bull. seism. Soc. Am, 4, 1770–1778.
Woodhouse, J.H., 1988. The calculation of the eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun, in Seismological Algorithms, pp. 321–370, ed. Doornbos, D.J., Academic Press, San Diego, CA.
Yang, H.-Y., Zhao, L., & Hung, S.-H., 2010. Synthetic seismograms by normal-mode summation: a new derivation and numerical examples, Geophys. J. Int. 183, 1613–1632, doi: 10.1111/j.1365-246X.2010.04820.x.
Yang, H.-Y., 2012. Normal-mode synthetics and application – Surface wave tomography beneath southern Taiwan, Ph.D. thesis.
Yang, Y., Ritzwoller, M.H., Levshin, A.L. & Shapiro, N.M., 2007. Ambient noise Rayleigh wave tomography across Europe, Geophys. J. Int., 168(1), 259–274.
Yang, Y., Ritzwoller, M.H., Lin, F.C., Moschetti, M.P. & Shapiro, N.M., 2008. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography, J. geophys. Res., 113, B12310, doi:10.1029/2008JB005833.
Yao, H., van der Hilst, R.D. & de Hoop, M.V., 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and twostation analysis—I. Phase velocity maps, Geophys. J. Int., 166(2), 732–744.
Yao, H., Campman, X., de Hoop, M.V. & van der Hilst, R.D., 2009a. Estimation of surface wave Green’s functions from correlation of direct waves, coda waves, and ambient noise in SE Tibet, Phys. Earth planet. Inter., 177(1-2),1–11.
Yao, H. & van der Hilst, R.D., 2009b. Analysis of ambient noise energy distribution and phase velocity bias in ambient noise tomography, with application to SE Tibet, Geophys. J. Int., 179(2), 1113–1132.
Yu, S.-B., Chen, H.-Y. & Kuo, L.-C., 1997. Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274(1), 41-59.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59083-
dc.description.abstract周遭噪訊層析成像利用台站間的互相關函數,近年來被大量應用於地殼剪力波速度構造層析成像的研究。對速度構造的解析度,透過架設密集的測站網長時間觀測連續記錄得到很大提升。自2006年以來,中研院地球所,以及臺美合作的TAIGER計畫,在臺灣東部外海進行一系列的海底地震儀實驗,其主要目的在於擴增台灣地震網的覆蓋範圍,同時改進對台灣東部外海速度構造的解析度。
本次研究使用過去10年間在臺灣東部外海海域所佈放的67个海底地震儀記錄的垂向分量和差壓力儀的記錄,提取出短週期的雷利波和長週期的亞重力波訊號,來研究臺灣東部外海地下構造以及臺灣短週期的secondary microseism和長週期的亞重力波的來源。本研究應用基於連續小波變換的方法來描述訊號的頻譜特徵隨時間的變化,並量取群速度和相速度。結果顯示,基階瑞雷面波可從位移和壓力分量恢復的噪訊互相關函數中被觀測到,主要頻段位於3-8 秒,速度位於0.3-1.5 km/s。長週期的亞重力波,於壓力分量和部分位移分量被觀測到,主要頻段為50-180 秒,速度為0.05-0.1 km/s,符合線性理論的預測。
根据每一區域量测得到的平均频散曲线,利用較準確的本徵震盪的線性疊加理論來計算相速度對P波和S波速度隨深度變化的敏感度算核,然後採用阻尼最小平方線性反演方法求得隨深度變化的一維P和S波速度模型。結果顯示東北外海的沖繩海槽淺層速度較慢,且Vp/Vs比值較高;琉球前弧速度相對較快,在淺層的Vp/Vs比值較高;花東盆地具較快的速度結構,並且Vp/Vs比值較低。另外,由於台灣東部外海淺層剪力波速度因缺少良好的參考模型,線性反演的結果會非常受限於假設的起始模型,未來必須採用非線性的貝葉斯反演以求得統計上可能速度模型的機率分佈。
zh_TW
dc.description.abstractIn recent years, noise cross-correlation functions (NCFs) from ambient noise between paired stations provide the unprecedented interstation path coverage within highly instrumented regions for high resolution shear wave speed tomographic imaging. Since 2006, a number of OBS experiments from the Institute of Earth Sciences (IES), Academia Sinica of Taiwan and TAIGER, a US-Taiwan cooperative research project, have been conducted in deep sea east of Taiwan to expand the path coverage of seismic network and improve the resolution of the subseafloor velocity structure.
In this study, we use continuous recordings of vertical records and differential pressure gauges in 67 OBSs deployed offshore eastern Taiwan during the past 10 years to investigate the subseafloor structures from extracted Rayleigh waves and the source origin contributing to the short period secondary microseism and generation of very long-period infragravity waves. We apply a wavelet-based method to characterize the time-varying spectral properties and measure the frequency-dependent group and phase velocities of these waves. The results show fundamental mode Rayleigh waves in both the vertical records and DPG derived NCFs with a dominant period of 3-8 s and relatively slow speed of 0.3-1.5 km/s. The infragravity waves at periods ranging from 50 to 180 s found in DPGs records and some of the vertical records show the speed of 0.05-0.1 km/s.
With these robust dispersion measurements, we employ an accurate normal mode summation method to calculate the sensitivity kernels of phase velocity anomalies with respect to fractional perturbations in P- and S-wave velocity Vp and Vs as a function of period and depth. A damped least-squares linear inversion is then conducted to constrain the radial velocity structures beneath the seafloor offshore eastern Taiwan. Our results show that the subseafloor S-wave velocity structure in Okinawa Trough (OT) is slowest among all the investigation areas offshore eastern Taiwan, with a very high Vp/Vs ratio in the topmost 2 km of the crust. The S wave velocity in the Ryukyu forearc is relatively higher but also with a high Vp/Vs ratio in the shallow depths, while that in the Huatung Basin is high with a low Vp/Vs ratio. Because of the lack of constraints on the shear velocity structure offshore eastern Taiwan, the linear inversion results are highly dependent on the assumed initial models. A nonlinear Bayesian inversion is needed to obtain the probability distribution of the possible 1-D structures in the future study.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T09:15:50Z (GMT). No. of bitstreams: 1
ntu-106-R04224116-1.pdf: 8523198 bytes, checksum: ab196edc286a679d3e36e2666b00b806 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables x
Chapter 1. Introduction 1
1.1 Study Region and Motivation 1
1.2 The Earth’s Response and Noise Cross Correlation 6
1.3 Characteristics and Origin of Ambient Noise 8
1.4 Infragravity Wave 13
1.5 Dispersion of the NCFs and 1-D Structure 16
Chapter 2. Data 18
2.1 OBS Data and Noise Level 18
2.2 Effect of Instrument Response on the NCFs 23
2.3 The Noise cross-correlation function 25
Chapter 3. Method 33
3.1 Directionality of ambient noise and infragravity wave 33
3.2 Phase velocity measurement 35
3.3 Normal-mode summation 40
3.4 1-D Sensitivity kernel of Rayleigh wave phase velocity 44
3.4.1 Effect of water layer on phase velocity kernel 44
3.4.2 Cause of the negative sensitivity to S-wave velocity near the seafloor 47
3.4.3 Cause of strong sensitivity to P-wave velocity 49
3.5 1-D Linearized phase velocity inversion 51
3.5.1 Damped least-squares solution 53
3.5.2 Model spread, model covariance, and χ2 53
3.5.3 Iterative solution 55
3.6 Bayesian inversion 56
3.6.1 Model parameterization and the prior 57
3.6.2 Proposal Distributions and acceptance probability 58
3.6.3 The Likelihood Function 60
Chapter 4. Results 63
4.1 Seasonal variation and directionality of noise source 63
4.1.1. Short-period Rayleigh waves 63
4.1.2. Infragravity wave 66
4.2 Seismic structure in shallow crust offshore east Taiwan 70
4.2.1 Offshore NE region 71
4.2.2 SE offshore region 77
4.2.3 East offshore region 79
1. Ryukyu forearc 81
2. Huatung Basin 84
Chapter 5. Conclusion 87
References 89
dc.language.isoen
dc.title利用海底地震儀記錄研究台灣東部外海淺層地殼速度構造和噪訊特性zh_TW
dc.titleStudies of subsurface velocity structure and directionality of ambient noise offshore eastern Taiwan using OBS dataen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭本垣(Ban-Yuan Kuo),林佩瑩(Pei-Ying Patty Lin),喬凌雲(Ling-Yun Chiao),龔源成(Yuancheng Gung)
dc.subject.keyword周遭噪訊,海底地震儀,互相關函數,相速度,亞重力波,貝葉斯反演,zh_TW
dc.subject.keywordAmbient noise,OBS,cross-correlation functions,phase velocity,infragravity wave,Bayesian inversion,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201701599
dc.rights.note有償授權
dc.date.accepted2017-07-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
8.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved