請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59070
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝宏昀(Hung-Yun Hsieh) | |
dc.contributor.author | Yu-Chung Chen | en |
dc.contributor.author | 陳昱中 | zh_TW |
dc.date.accessioned | 2021-06-16T08:48:09Z | - |
dc.date.available | 2015-08-26 | |
dc.date.copyright | 2013-08-26 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-20 | |
dc.identifier.citation | [1] J. Lee, Y. Kim, H. Lee, B. L. Ng, D. Mazzarese, J. Liu, W. Xiao, and Y. Zhou, “Coordinated multipoint transmission and reception in LTE-advanced systems,” IEEE Communications Magazine, vol. 50, no. 11, pp. 44–50, 2012.
[2] J. woo Cho, J. Mo, and S. Chong, “Joint network-wide opportunistic scheduling and power control in multi-cell networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 3, pp. 1520–1531, 2009. [3] L. Li, C. Xu, and M. Tao, “Resource allocation in open access OFDMA femtocell networks,” IEEE Wireless Communications Letters, vol. 1, no. 6, pp. 625–628, 2012. [4] U. Jang, H. Son, J. Park, and S. Lee, “CoMP-CSB for ICI nulling with user selection,” IEEE Transactions on Wireless Communications, vol. 10, no. 9, pp. 2982–2993, 2011. [5] Cisco, “Cisco visual networking index: Global mobile data traffic forecast update, 2012v2017,” Tech. Rep., Feb. 2013. [6] 3GPP TR36.814, V9.0.0, “Further advancements for E-UTRA physical layer aspects,” Mar. 2010. [7] L. Li, M. Pal, and Y. Yang, “Proportional fairness in multi-rate wireless lans,” in Proceedings of IEEE INFOCOM, 2008, pp. 1004–1012. [8] K. Son, S. Chong, and G. Veciana, “Dynamic association for load balancing and interference avoidance in multi-cell networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 7, pp. 3566–3576, 2009. [9] H. Zhou, P. Fan, and J. Li, “Global proportional fair scheduling for networks with multiple base stations,” IEEE Transactions on Vehicular Technology, vol. 60, no. 4, pp. 1867–1879, 2011. [10] Y. Sun, H. Tian, Y. Pei, H. Li, and S. Gao, “Coordinated power allocation based on interference analysis for multi-cell OFDMA systems,” in Proceedings of IEEE 13th International Conference on Communication Technology (ICCT), 2011. [11] W. Chen, K. Letaief, and Z. Cao, “Network interference cancellation,” IEEE Transactions on Wireless Communications, vol. 8, no. 12, pp. 5982–5999, 2009. [12] C. Jin, L. Zhang, and G. Wei, “Decomposition-based joint subcarrier and power allocation algorithm for OFDM downlink system,” in Proceedings of IEEE Vehicular Technology Conference (VTC Spring), 2008. [13] J. Huang, V. Subramanian, R. Agrawal, and R. Berry, “Downlink scheduling and resource allocation for OFDM systems,” IEEE Transactions on Wireless Communications, vol. 8, no. 1, pp. 288–296, 2009. [14] L. Venturino, N. Prasad, and X. Wang, “Coordinated scheduling and power allocation in downlink multicell OFDMA networks,” IEEE Transactions on Vehicular Technology, vol. 58, 2009. [15] W. Yu and R. Lui, “Dual methods for nonconvex spectrum optimization of multicarrier systems,” IEEE Transactions on Communications, vol. 54, no. 7, pp. 1310–1322, 2006. [16] H. Zhang, L. Venturino, N. Prasad, P. Li, S. Rangarajan, and X. Wang, “Weighted sum-rate maximization in multi-cell networks via coordinated scheduling and discrete power control,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 6, pp. 1214–1224, 2011. [17] Z. Dai, R. Fracchia, J. Gosteau, P. Pellati, and G. Vivier, “Vertical handover criteria and algorithm in IEEE 802.11 and 802.16 hybrid networks,” in Proceedings of IEEE International Conference on Communications (ICC), 2008, pp. 2480–2484. [18] B.-G. Kim and J.-W. Lee, “Joint opportunistic subchannel and power scheduling for relay-based OFDMA networks with scheduling at relay stations,” IEEE Transactions on Vehicular Technology, vol. 59, no. 5, pp. 2138–2148, 2010. [19] P. Xue, P. Gong, J. H. Park, D. Park, and D. K. Kim, “Radio resource management with proportional rate constraint in the heterogeneous networks,” IEEE Transactions on Wireless Communications, vol. 11, no. 3, pp. 1066–1075, 2012. [20] 3GPP TR36.819, V11.0.0, “Coordinated multi-point operation for LTE physical layer aspects,” Dec. 2011. [21] “Final report of 3gpp tsg ran wg1 #71 v1.0.0,” 3GPP, Tech. Rep., 2013. [22] 3GPP R1-110649, “Aspects on distributed RRUs with shared Cell-ID for heterogeneous deployments,” Feb. 2011. [23] H. Li, J. Hajipour, A. Attar, and V. Leung, “Efficient HetNet implementation using broadband wireless access with fiber-connected massively distributed antennas architecture,” IEEE Wireless Communications, vol. 18, no. 3, pp. 72–78, 2011. [24] A. Damnjanovic, J. Montojo, J. Cho, H. Ji, J. Yang, and P. Zong, “UE’s role in LTE advanced heterogeneous networks,” IEEE Communications Magazine, vol. 50, no. 2, pp. 164–176, 2012. [25] D. Lopez-Perez, I. Guvenc, G. De la Roche, M. Kountouris, T. Quek, and J. Zhang, “Enhanced intercell interference coordination challenges in heterogeneous networks,” IEEE Wireless Communications, vol. 18, no. 3, pp. 22–30, 2011. [26] I. Guvenc, “Capacity and fairness analysis of heterogeneous networks with range expansion and interference coordination,” IEEE Communications Letters, vol. 15, no. 10, pp. 1084–1087, 2011. [27] Z.-Q. Luo and S. Zhang, “Dynamic spectrum management: complexity and duality,” IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 1, pp. 57–73, 2008. [28] D. Palomar and M. Chiang, “A tutorial on decomposition methods for network utility maximization,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 8, pp. 1439–1451, 2006. [29] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan., “Rate control in communication networks: shadow prices, proportional fairness and stability,” Journal of the Operational Research Society, vol. 49, pp. 237–252, 1998. [30] H. Kim and Y. Han, “A proportional fair scheduling for multicarrier transmission systems,” IEEE Communications Letters, vol. 9, no. 3, pp. 210–212, 2005. [31] M. Mehrjoo, M. Awad, M. Dianati, and X. Shen, “Design of fair weights for heterogeneous traffic scheduling in multichannel wireless networks,” IEEE Transactions on Communications, vol. 58, Oct. 2010. [32] I. Fraimis and S. Kotsopoulos, “QoS-based proportional fair allocation algorithm for OFDMA wireless cellular systems,” IEEE Communications Letters, vol. 15, no. 10, pp. 1091–1093, 2011. [33] T. Wang, Y. Wang, C. Shi, and P. Zhang, “Joint resource allocations for remote radio head deployments with coherent transmitter,” EURASIP Journal on Wireless Communications and Networking, vol. 2012, 2012. [34] D. Fooladivanda and C. Rosenberg, “Joint resource allocation and user association for heterogeneous wireless cellular networks,” IEEE Transactions on Wireless Communications, vol. 12, no. 1, pp. 248–257, 2013. [35] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and K. Sayana, “Coordinated multipoint transmission and reception in LTE-advanced: deployment scenarios and operational challenges,” IEEE Communications Magazine, vol. 50, no. 2, pp. 148–155, 2012. [36] C. Yang, S. Han, X. Hou, and A. Molisch, “How do we design CoMP to achieve its promised potential?” IEEE Wireless Communications, vol. 20, no. 1, pp. 67–74, 2013. [37] D. Choi, D. Lee, and J.-H. Lee, “Resource allocation for CoMP with multiuser MIMO-OFDMA,” IEEE Transactions on Vehicular Technology, vol. 60, no. 9, pp. 4626–4632, 2011. [38] X. Zhang, Y. Sun, X. Chen, S. Zhou, J. Wang, and N. B. Shroff, “Distributed power allocation for coordinated multipoint transmissions in distributed antenna systems,” IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 2281–2291, 2013. [39] D. Wang, X. Xu, X. Chen, and X. Tao, “Joint scheduling and resource allocation based on genetic algorithm for coordinated multi-point transmission using adaptive modulation,” in Proceedings of IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 2012, pp. 220–225. [40] J. Zhao, T. Q. Quek, and Z. Lei, “Coordinated multipoint transmission with limited backhaul data transfer,” IEEE Transactions on Wireless Communications, vol. 12, no. 6, pp. 2762–2775, 2013. [41] H. Binru, L. Jingya, and T. Svensson, “Joint scheduling for multi-service in coordinated multi-point OFDMA networks,” in Proceedings of IEEE Vehicular Technology Conference (VTC Spring), 2012, pp. 1–5. [42] W. Murray and K. M. Ng, “An algorithm for nonlinear optimization problems with binary variables,” Computational Optimization and Applications, vol. 47, no. 2, Oct. 2010. [43] M. Pant, R. Thangaraj, and A. Abraham, “Particle swarm optimization: Performance tuning and empirical analysis,” Foundations of Computational Intelligence, vol. 203, no. 2, pp. 101–128, 2009. [44] J. B. Rosen, “The gradient projection method for nonlinear programming. Part I: Linear constraints,” Journal of the Society for Industrial and Applied Mathematics, vol. 8, no. 1, pp. 181–217, Mar. 1960. [45] J. Papandriopoulos and J. Evans, “Low-complexity distributed algorithms for spectrum balancing in multi-user DSL networks,” in Proceedings of IEEE International Conference on Communications (ICC), vol. 7, 2006, pp. 3270– 3275. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59070 | - |
dc.description.abstract | 近年來由於用戶的增加,無線網路的需求節節上升,然而傳統的大型基地台受制於隨距離遞減的訊號強度,無法提供範圍內所有用戶足夠的服務品質;於是包含多種傳輸節點的異質性網路逐漸受到重視,該類型網路透過增加傳輸節點的密度,能更有效率的在不同空間共享相同的頻帶資源。儘管在過去數年中,同質性網路的資源規劃問題諸如:合作式排程、干擾消除等受到很大的關注,異質性網路在相對應的各領域仍未被充分討論。在本篇論文中,我們考慮包含數個低功率節點(Remote Radio Head)及一個大型基地台的異質性網路下合作式排程的相關問題,且加入了多點合作式通訊(Corrdinated-Multi Point, CoMP)的可能,使得網路擁有更高的規畫自由度。為了進一步分析這個問題,我們首先利用數學模型,將這包含多傳輸點的網路排程問題抽象化,並引用比例公平(Proportional Fair)作為最佳化目標。然而,由於通盤化的運算過於複雜,無論在設計或實作上皆有困難,因此我們藉由合理的推導與簡化,將其轉化為一合理規模的混和整數非線性規劃問題。針對該問題特性,我們提出了一個兩相迭代式演算法,將問題拆解成資源分配及功率調整兩組子問題,並透過網路特性的應用,分別對低功率節點和大型基地台做出不同的處理。簡單來說,資源分配子問題考量的是眾多節點在各通道的合作情形,有別於傳統貪婪演算法(Greedy Algorithm)之資源分配方式,大型基地台會考慮多個功率級別,避免落入局部最佳解;而功率調整子問題則是對通道間的資源做出更適合的調配,由於低功率節點對其他節點的影響較低,我們採用較為效率的演算法求解,以期在運算效能上有所提升。模擬結果說明所提之演算法能有效的處理目標問題,並在各項指標上優於現有的其他方法,尤其比較傳統同質性網路下設計之資源規劃時更為明顯,在使用一半的運算時間下,在使用者的平均速率上仍提供15\%的增幅。而加入多點合作式通訊更使得排程多樣性顯著增加,並因而提升整體網路的輸出效率。 | zh_TW |
dc.description.abstract | In recent years, the requirement of cellular network is highly increasing due to fast growing mobile users.However, conventional macro cell with large coverage can not provide advanced channel efficiency because of physical limitation. Thus, heterogeneous networks (HetNets) which increasing density of transmitting node attracts extensive attention. In this thesis, we investigate the problem of coordinated resource allocation for HetNets with low-power RRHs. The scenario we consider is the configuration when RRHs share the same cell ID with the macro BS such that coordinated multi-point (CoMP) operations among transmission points can be performed in a finer granularity without undesirably triggering frequent handover operations. While transmission scheduling in homogeneous networks (HomoNets) has been well developed in the literature, this is not the case for CoMP-enabled HetNets. We first formulate an optimization problem for resource allocation from multiple transmission points to a set of users demanding fair service. Since the problem incurs high complexity, we transform the formulation into an iterative problem for coordinated scheduling under CoMP. To solve the mixed-integer non-linear problem, we propose a two-phase iterative algorithm for sub-channel resource allocation and cross-channel power allocation. Briefly, in the sub-channel sub-problem each sub-channel is handled independently of others for resource allocation while in the cross-channel sub-problem the coupling among sub-channels is considered for proper allocation of the power budget to individual sub-channels. Simulation results show that the proposed algorithm can effectively solve the target problem with noticeable performance gain compared to related approaches. We also observe that conventional strategy of UE selection in HomoNets is not suitable to scheduling in HetNets. CoMP-enabled HetNets have more flexibility in scheduling for improving the cumulative throughput. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:48:09Z (GMT). No. of bitstreams: 1 ntu-102-R00942051-1.pdf: 3402795 bytes, checksum: 428df9948ea63fd1c1e41e28b8ba9db7 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . 1
CHAPTER 2 BACKGROUND AND RELATED WORK . . . . . 5 2.1 Heterogeneous Networks . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Coordinated Multi-Point Transmission . . . . . . . . . . . . . . . . 8 2.3 General design and Mathematical Analysis . . . . . . . . . . . . . 11 2.4 Jointly Scheduling in Homogeneous Networks . . . . . . . . . . . . 13 2.5 Jointly Scheduling in Heterogeneous Networks . . . . . . . . . . . 18 2.6 Coordinated Multi-Point Strategy . . . . . . . . . . . . . . . . . . 20 CHAPTER 3 SYSTEM MODEL . . . . . . . . . . . . . . . . . . . . 22 3.1 Network scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Coordinated Resource Allocation . . . . . . . . . . . . . . . . . . . 24 3.3 Transformation into Iterative Scheduling . . . . . . . . . . . . . . 26 CHAPTER 4 PROPOSED ALGORITHM . . . . . . . . . . . . . . 28 4.1 Two-Phase Iterative Method . . . . . . . . . . . . . . . . . . . . . 28 4.2 Initial Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 Sub-channel Resource Allocation (MINLP Programming) . . . . . 31 4.4 Sub-channel Resource Allocation (TP-based Selection) . . . . . . . 33 4.5 Cross-Channel Power Allocation (PSO) . . . . . . . . . . . . . . . 36 4.6 Cross-Channel Power Allocation (TLPC) . . . . . . . . . . . . . . 38 4.7 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 42 CHAPTER 5 PERFORMANCE EVALUATION . . . . . . . . . . 43 5.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 General Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 Comparison between Resource Allocation Methods . . . . . . . . . 46 5.4 Comparison between Power Allocation Methods . . . . . . . . . . 49 5.5 Performance Compared to Conventional Methods . . . . . . . . . . 53 5.6 Robustness of Network Change . . . . . . . . . . . . . . . . . . . . 57 CHAPTER 6 CONCLUSION AND FUTURE WORK . . . . . . 62 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 | |
dc.language.iso | en | |
dc.title | LTE-A 異質網路下協同排程與功率控制之演算法設計 | zh_TW |
dc.title | Solving the Coordinated Scheduling and Power Control Problem for CoMP Operations in LTE-Advanced Heterogeneous Networks | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李佳翰(Chia-Han Lee),高榮鴻(Rung-Hung Gau),魏宏宇(Hung-Yu Wei) | |
dc.subject.keyword | 異質網路,協同排程,多點協調技術,功率控制,比例公平, | zh_TW |
dc.subject.keyword | Heterogeneous network,Coordinated scheduling,Coordination multi-point,Power control,Proportional fair, | en |
dc.relation.page | 66 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-20 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。