Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59051
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬(Chin-Pin Lin)
dc.contributor.authorTing-Wei Chuen
dc.contributor.author朱庭緯zh_TW
dc.date.accessioned2021-06-16T08:46:56Z-
dc.date.available2013-09-24
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-20
dc.identifier.citation1 Creekmore, T. D. & Eklund, M. K. The possibility of skeletal anchorage. Journal of clinical orthodontics : JCO 17, 266-269 (1983).
2 Kanomi, R. Mini-implant for orthodontic anchorage. Journal of clinical orthodontics : JCO 31, 763-767 (1997).
3 Costa, A., Raffainl, M. & Melsen, B. Miniscrews as orthodontic anchorage: a preliminary report. The International journal of adult orthodontics and orthognathic surgery 13, 201-209 (1998).
4 Gray, J. B. & Smith, R. Transitional implants for orthodontic anchorage. Journal of clinical orthodontics : JCO 34, 659-666 (2000).
5 Tarnow, D. P., Emtiaz, S. & Classi, A. Immediate loading of threaded implants at stage 1 surgery in edentulous arches: ten consecutive case reports with 1- to 5-year data. The International journal of oral & maxillofacial implants 12, 319-324 (1997).
6 Lum, L. B., Beirne, O. R. & Curtis, D. A. Histologic evaluation of hydroxylapatite-coated versus uncoated titanium blade implants in delayed and immediately loaded applications. The International journal of oral & maxillofacial implants 6, 456-462 (1991).
7 Roberts, W. E., Helm, F. R., Marshall, K. J. & Gongloff, R. K. Rigid endosseous implants for orthodontic and orthopedic anchorage. The Angle orthodontist 59, 247-256, doi:10.1043/0003-3219(1989)059<0247:REIFOA>2.0.CO;2 (1989).
8 Deguchi, T. et al. The use of small titanium screws for orthodontic anchorage. Journal of dental research 82, 377-381 (2003).
9 Huja, S. S., Litsky, A. S., Beck, F. M., Johnson, K. A. & Larsen, P. E. Pull-out strength of monocortical screws placed in the maxillae and mandibles of dogs. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 127, 307-313, doi:10.1016/j.ajodo.2003.12.023 (2005).
10 Liou, E. J., Pai, B. C. & Lin, J. C. Do miniscrews remain stationary under orthodontic forces? American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 126, 42-47, doi:10.1016/S0889540604002057 (2004).
11 Duyck, J. et al. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clinical oral implants research 12, 207-218 (2001).
12 Favero, L., Brollo, P. & Bressan, E. Orthodontic anchorage with specific fixtures: related study analysis. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 122, 84-94 (2002).
13 Melsen, B. & Bosch, C. Different approaches to anchorage: a survey and an evaluation. The Angle orthodontist 67, 23-30, doi:10.1043/0003-3219(1997)067<0023:DATAAS>2.3.CO;2 (1997).
14 Carano, A., Lonardo, P., Velo, S. & Incorvati, C. Mechanical properties of three different commercially available miniscrews for skeletal anchorage. Progress in orthodontics 6, 82-97 (2005).
15 Miyawaki, S. et al. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics 124, 373-378, doi:10.1016/S0889540603005651 (2003).
16 Disegi, J. A. & Eschbach, L. Stainless steel in bone surgery. Injury 31 Suppl 4, 2-6 (2000).
17 Antunes, R. A. & de Oliveira, M. C. Corrosion processes of physical vapor deposition-coated metallic implants. Critical reviews in biomedical engineering 37, 425-460 (2009).
18 Wu, T. Y., Kuang, S. H. & Wu, C. H. Factors associated with the stability of mini-implants for orthodontic anchorage: a study of 414 samples in Taiwan. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 67, 1595-1599, doi:10.1016/j.joms.2009.04.015 (2009).
19 Chen, Y. J. et al. Stability of miniplates and miniscrews used for orthodontic anchorage: experience with 492 temporary anchorage devices. Clinical oral implants research 19, 1188-1196, doi:10.1111/j.1600-0501.2008.01571.x (2008).
20 Gracco, A. et al. Numerical/experimental analysis of the stress field around miniscrews for orthodontic anchorage. European journal of orthodontics 31, 12-20, doi:10.1093/ejo/cjn066 (2009).
21 Morais, S. et al. Decreased consumption of Ca and P during in vitro biomineralization and biologically induced deposition of Ni and Cr in presence of stainless steel corrosion products. Journal of biomedical materials research 42, 199-212 (1998).
22 Jouyce Y. Wong, J. D. B. biomaterials: principles and pracices. Vol. chap. 2 (CRC. Press, 2012).
23 LeGeros, R. Z. Properties of osteoconductive biomaterials: calcium phosphates. Clinical orthopaedics and related research, 81-98 (2002).
24 Caulier, H. et al. The effect of Ca-P plasma-sprayed coatings on the initial bone healing of oral implants: an experimental study in the goat. Journal of biomedical materials research 34, 121-128 (1997).
25 Fathi, M. H., Salehi, M., Saatchi, A., Mortazavi, V. & Moosavi, S. B. In vitro corrosion behavior of bioceramic, metallic, and bioceramic-metallic coated stainless steel dental implants. Dental materials : official publication of the Academy of Dental Materials 19, 188-198 (2003).
26 Wennerberg, A., Jimbo, R., Allard, S., Skarnemark, G. & Andersson, M. In vivo stability of hydroxyapatite nanoparticles coated on titanium implant surfaces. The International journal of oral & maxillofacial implants 26, 1161-1166 (2011).
27 Kim, H., Choi, S. H., Chung, S. M., Li, L. H. & Lee, I. S. Enhanced bone forming ability of SLA-treated Ti coated with a calcium phosphate thin film formed by e-beam evaporation. Biomedical materials 5, 044106, doi:10.1088/1748-6041/5/4/044106 (2010).
28 Mohammad Hossein Fathi, V. M. Tantalum, Niobium and Titanium Coatings for Biocompatibility Improvement of Dental Implants. Dent Res J 4, 74-82 (2007).
29 Christensen, F. B., Dalstra, M., Sejling, F., Overgaard, S. & Bunger, C. Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 9, 97-103 (2000).
30 Guo Biao, X. H., He Hong. Histological Study on Stainless-steel and Titanium Mini-screw as Orthodontics Anchorage. 2nd Meeting of IADR Pan Asian Pacific Federation (PAPF) and the 1st Meeting of IADR Asia/Pacific Region ( 2009).
31 Khelfaoui, Y., Kerkar, M., Bali, A. & Dalard, F. Electrochemical characterisation of a PVD film of titanium on AISI 316L stainless steel. Surface and Coatings Technology 200, 4523-4529, doi:10.1016/j.surfcoat.2005.03.043 (2006).
32 J Heinrichs, T. J., U Wiklund, H Engqvist. Physical vapour deposition and bioactivity of crystalline titanium dioxide thin films. Society for Biomaterials and Artificial Organs (India) (20080314-15).
33 Gluzek J, M. J., Furman P, Nitsch K. Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Biomaterials 18, 789-794 (1997).
34 Shen GX, C. Y., Lin CJ. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films 489, 130-136 (2005).
35 G.X. Shen, R. G. D., Y.C. Chen, C.J. Lin,, and D. Scantlebury. Study on Hydrophobic Nano-Titanium Dioxide Coatings for Improvement in Corrosion Resistance of Type 316L Stainless Steel Corrosion 61 (2005).
36 Shen, G. X., Chen, Y. C., Lin, L., Lin, C. J. & Scantlebury, D. Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals. Electrochimica Acta 50, 5083-5089, doi:10.1016/j.electacta.2005.04.048 (2005).
37 T., S. & M., K. Topographic fidelity of Ti-O film deposited onto Ti-6Al-4V alloy substrate to its surface by reactive DC sputtering. Vol. 32 (Elsevier, 1997).
38 Ohring, M. The materials science of thin films. (academil press limited, 1992).
39 Wagner, W. C. A brief introduction to advanced surface modification technologies. The Journal of oral implantology 18, 231-235 (1992).
40 Khelfaoui, Y. Electrochemical characterisation of a PVD film of titanium on AISI 316L stainless steel. Surface and Coatings Technology 200, 4523-4529 (2006).
41 Han, C. M., Kim, H. E., Kim, Y. S. & Han, S. K. Enhanced biocompatibility of Co-Cr implant material by Ti coating and micro-arc oxidation. Journal of biomedical materials research. Part B, Applied biomaterials 90, 165-170, doi:10.1002/jbm.b.31270 (2009).
42 Pan, J., Leygraf, C., Thierry, D. & Ektessabi, A. M. Corrosion resistance for biomaterial applications of TiO2 films deposited on titanium and stainless steel by ion-beam-assisted sputtering. Journal of biomedical materials research 35, 309-318 (1997).
43 Gluszek, J., Masalski, J., Furman, P. & Nitsch, K. Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Biomaterials 18, 789-794 (1997).
44 Nagarajan, S. R., N. Surface characterisation and electrochemical behaviour of porous titanium dioxide coated 316L stainless steel for orthopaedic applications. Applied Surface Science 255, 3927-3932.
45 Behrisch, R. Sputtering by particle bombardment. (Spring, 1981).
46 Dholam R, P. N., Adami M. Physically and chemically synthesized TiO2 composite thin films for hydrogen production by photocatalytic water splitting. Int J Hydrogen Energy 33, 6896e6903 (2008).
47 Brohede, U. et al. A novel graded bioactive high adhesion implant coating. Applied Surface Science 255, 7723-7728, doi:10.1016/j.apsusc.2009.04.149 (2009).
48 Harsha. (Elsevier, Great Brutain, 2006).
49 J, B. C. Sol-gel science: the physics and chemistry of sol-gel process. (academic press, 1990).
50 Elfanaoui, A. et al. Optical and structural properties of TiO2 thin films prepared by sol–gel spin coating. International Journal of Hydrogen Energy 36, 4130-4133, doi:10.1016/j.ijhydene.2010.07.057 (2011).
51 Chen, Y. & Dionysiou, D. D. Correlation of structural properties and film thickness to photocatalytic activity of thick TiO2 films coated on stainless steel. Applied Catalysis B: Environmental 69, 24-33, doi:10.1016/j.apcatb.2006.05.002 (2006).
52 Bouabid K, I. A., Amira Y, Sdaq A, Assabane A, Ait-Ichou Y. Optical study of TiO2 thin films prepared by solegel. Ferroelectrics 372, 69e75 (2008).
53 Ritter, E. Properties of optical film materials. Applied optics 20, 21-25, doi:10.1364/AO.20.000021 (1981).
54 Klemberg-Sapieha, J. E. et al. Mechanical characteristics of optical coatings prepared by various techniques: a comparative study. Applied optics 43, 2670-2679 (2004).
55 Larsson, C. et al. Bone response to surface-modified titanium implants: studies on the early tissue response to machined and electropolished implants with different oxide thicknesses. Biomaterials 17, 605-616 (1996).
56 Esposito, M., Lausmaa, J., Hirsch, J. M. & Thomsen, P. Surface analysis of failed oral titanium implants. Journal of biomedical materials research 48, 559-568 (1999).
57 Seshan, K. Handbook of Thin Film Deposition (Materials and Processing Technology). (Noyes bablication, 2002).
58 Shalabi, M. M., Gortemaker, A., Van't Hof, M. A., Jansen, J. A. & Creugers, N. H. Implant surface roughness and bone healing: a systematic review. Journal of dental research 85, 496-500 (2006).
59 Buser, D. et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. Journal of biomedical materials research 25, 889-902, doi:10.1002/jbm.820250708 (1991).
60 London, R. M., Roberts, F. A., Baker, D. A., Rohrer, M. D. & O'Neal, R. B. Histologic comparison of a thermal dual-etched implant surface to machined, TPS, and HA surfaces: bone contact in vivo in rabbits. The International journal of oral & maxillofacial implants 17, 369-376 (2002).
61 Carlsson, L., Rostlund, T., Albrektsson, B. & Albrektsson, T. Removal torques for polished and rough titanium implants. The International journal of oral & maxillofacial implants 3, 21-24 (1988).
62 Vercaigne, S., Wolke, J. G., Naert, I. & Jansen, J. A. Bone healing capacity of titanium plasma-sprayed and hydroxylapatite-coated oral implants. Clinical oral implants research 9, 261-271 (1998).
63 Wennerberg A, A. T. Suggested guidelines for the topographic evaluation of implant surfaces. The International journal of oral & maxillofacial implants 15, 331-344 (2000).
64 Wennerberg A, A. T. Effects of titanium surface topography on bone integration: a systematic review. Clin Oral Implants Res. 20, 172-184 (2009).
65 P.A., S. Adhesion testing by the scratch test method: the influence of intrinsic and extrinsic parameters on the critical load. Thin Solid Films 154, 333-349 (1987).
66 P.J., B. The relationship between hardness and scratch adhesion. Thin Solid Films 154, 403-416 (1987).
67 Liu, S. & Yang, Z. Evaluation of the Effect of Acute and Subacute Exposure to TiO2 Nanoparticles on Oxidative Stress. Methods in molecular biology 1028, 135-145, doi:10.1007/978-1-62703-475-3_8 (2013).
68 Onuma, K. et al. Nano-scaled particles of titanium dioxide convert benign mouse fibrosarcoma cells into aggressive tumor cells. The American journal of pathology 175, 2171-2183, doi:10.2353/ajpath.2009.080900 (2009).
69 Frisken, K. W., Dandie, G. W., Lugowski, S. & Jordan, G. A study of titanium release into body organs following the insertion of single threaded screw implants into the mandibles of sheep. Australian dental journal 47, 214-217 (2002).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59051-
dc.description.abstract近年來隨著矯正領域中骨性錨定的盛行,各種針對矯正用迷你骨釘的幾何形 狀、材質或表面形貌的改質,皆曾被指出能改變迷你骨釘的臨床使用成功率。本 實驗選用俱有高機械強度的迷你骨釘不鏽鋼鋼材,希望藉由表面鍍一層具生物相 容性薄膜的改質技術,以提高其生物相容性與骨整合能力,進而提升臨床使用成 功率。
本實驗為求對各項機械性質測試能在較單純的情況下進行精確分析,因此是 選用與醫用不鏽鋼迷你骨釘相同材質的 316L 不鏽鋼板來進行表面鍍膜作業,希望 找出具最佳機械性質表現的鍍膜參數。本實驗的變數含以下四項:1.鍍膜材料,選 用鈦與二氧化鈦兩種。2.鍍膜方式,二氧化鈦薄膜以磁控濺鍍或溶膠凝膠法方式製 成,鈦薄膜以磁控濺鍍或電子束蒸鍍方式製作。3.鍍膜厚度,選擇比較的厚度範圍 為 30~500nm。4.表面粗糙度。
薄膜製成後,以場發射電子微探分析儀與X光繞射分析儀分析薄膜表面組成 與晶相,以場發射與掃瞄式電子顯微鏡觀察薄膜表面與截面,以彩色三維雷射掃 瞄儀分析薄膜表面粗糙度,並藉由刮痕測試機評估各種鍍膜參數下的薄膜附著性。
實驗結果顯示鈦薄膜可藉由以磁控濺鍍或電子束蒸鍍方式製作,但鈦薄膜於 316L 基板上的附著性極差,幾乎無法承受任何正向力與側向力。反之,二氧化鈦 薄膜無論以磁控濺鍍或溶膠凝膠法方式製成,其附著性都較鈦薄膜佳。另外,膜 厚與表面粗糙度確實會影響薄膜附著性,二氧化鈦薄膜附著性隨厚度增加而增 加,而基板表面粗糙度若增加,薄膜抗破裂(crack)能力會下降,但抗剝落(detachment) 能力會增加。
zh_TW
dc.description.abstractIn recent years, with the increased application of the orthodontic bony anchorage, it had been proposed to improve the clinical success rate of orthodontic mini-screws by a variety of modification of screw geometry, material or surface morphology. Our intention in this study was to modify the surface of stainless steel by surface coating of biocompatible films and improve the biocompatibility and the capability of bone integration.
The 316L stainless steel plates with the same composition of orthodontic stainless steel screws were used in this study to eliminate variables and simplify the mechanical testing conditions. The experimental variables were included as follow: 1. Coating materials. Titanium and titanium dioxide. 2. Coating methods. Magnetron sputtering or sol-gel method for titanium dioxide film. And magnetron sputtering or electron beam evaporation method for titanium film. 3 Coating thickness. With the range of 30 to 500 nm. 4. Surface roughness.
The composition and crystalline phase were analyzed by electron probe microanalyzer (EPMA) and X-ray diffraction analyzer (XRD). The surface and cross-section of films were examined by field emission scanning electron microscope. And the color three-dimensional laser scanning analyzer was used to calculate the surface roughness of films. Finally, the film adhesion under various coating parameters was evaluated by a scratch test machine.
The study results show that the titanium film could be made by the magnetron sputtering or the electron beam evaporation method. However, poor adhesion between the titanium coating and the substrate was noted by the scratch test. On the other hands, regardless of the coating methods by magnetron sputtering or sol-gel method, the
v
titanium dioxide film performed good adhesion properties. In addition, the film thickness and surface roughness does affect the property of film adhesion. The ability of spalling resistance was improved by increased coating thickness and by increased surface roughness. But the crack resistance property was weaken with increase of the surface roughness of films.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:46:56Z (GMT). No. of bitstreams: 1
ntu-102-R99422011-1.pdf: 9098159 bytes, checksum: 88c865d2afe70d5a21259fefb0a52a49 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iii
ABSTRACT v
目錄 vii
圖目錄 x
表目錄 xii
Chapter 1 緒論 1
Chapter 2 文獻回顧 4
2.1 鍍膜材料(Coating Material) 5
2.1.1 羥基磷灰石(Hydroxyapatite, HA) 5
2.1.2 鈮(Niobium), 鉭(Tantalum) 6
2.1.3 鈦(Titanium, Ti) 6
2.1.4 二氧化鈦 (Titanium Dioxide, TiO2) 6
2.1.5 結論 7
2.2 鍍膜方法 8
2.2.1 磁控濺鍍(Magnetron Sputtering) 8
2.2.2 電子束蒸鍍法(E-Beam Evaporator Method) 9
2.2.3 溶膠凝膠法(Sol-Gel Method) 10
2.2.4 結論 11
2.3 薄膜厚度之設定 12
2.4 基材的表面粗糙度(Surface Roughness of Substrate) 13
Chapter 3 材料與方法 16
3.1 研究材料 16
3.1.1 American Iron Steel Institute (AISI) 316L不鏽鋼板 16
3.1.2 鍍源 16
3.2 實驗儀器與設定 17
3.2.1 精密線切割機(Precision Wire Cutting Machine) 17
3.2.2 自動研磨機 17
3.2.3 彩色三維雷射掃描儀(Color 3D Laser Scanner) 17
3.2.4 超音波震洗機(Ultrasonic Cleaner) 17
3.2.5 磁控濺鍍機 18
3.2.6 電子束蒸鍍機(Electron Beam Evaporator) 18
3.2.7 溶膠凝膠鍍膜製程設備 19
3.2.8 X光繞射分析儀 (X-ray Diffraction, XRD) 19
3.2.9 場發射電子微探分析儀 (Electron Probe Microanalyzer, EPMA) 20
3.2.10 掃描式電子顯微鏡與能量散射光譜儀 (Scanning Electron Microscopy and Energy Dispersive Spectrometer, EDS) 20
3.2.11 表面白金蒸鍍儀器 21
3.2.12 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy) 21
3.2.13 刮痕測試機(Scratch tester) 21
3.3 統計方法 22
Chapter 4 結果 23
4.1 以磁控濺鍍法製作之鈦薄膜與二氧化鈦薄膜分析 23
4.1.1 成分分析 23
4.1.2 結晶相分析 24
4.1.3 微結構分析 25
4.1.4 機械性質分析-刮痕測試(Scratch Test) 30
4.2 以磁控濺鍍法製作之鈦薄膜與以電子束蒸鍍法製作之鈦薄膜比較 35
4.3 以磁控濺鍍法製作之二氧化鈦薄膜與以溶膠凝膠法製作之二氧化鈦薄膜比較 35
4.4 表面粗糙度鑑定 36
4.5 基材表面粗糙度對薄膜附著性之影響 38
Chapter 5 討論 40
Chapter 6 結論 44
6.1 薄膜成分、晶相、微結構分析 44
6.2 機械性質分析-刮痕試驗分析薄膜附著性 45
6.3 未來方向與建議 46
REFERENCE 77
dc.language.isozh-TW
dc.subject表面改質zh_TW
dc.subject316L不鏽鋼矯正骨釘zh_TW
dc.subject二氧化鈦zh_TW
dc.subject鈦zh_TW
dc.subject溶膠凝膠法zh_TW
dc.subject電子束蒸鍍zh_TW
dc.subject磁控濺鍍zh_TW
dc.subjectsurface modificationen
dc.subjectelectron beam evaporationen
dc.subjectmagnetron sputteringen
dc.subjecttitanium dioxideen
dc.subject316L stainless steel orthodontic miniscrewsen
dc.subjecttitaniumen
dc.subjectSol-gel methoden
dc.title矯正迷你骨釘用鋼材之表面處理-機械分析zh_TW
dc.titleSurface treatment of 316L stainless steel in the application of orthodontic miniscrews-Mechanical analysisen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李志偉,廖運炫,張瑞青
dc.subject.keyword316L不鏽鋼矯正骨釘,表面改質,磁控濺鍍,電子束蒸鍍,溶膠凝膠法,鈦,二氧化鈦,zh_TW
dc.subject.keyword316L stainless steel orthodontic miniscrews,surface modification,magnetron sputtering,electron beam evaporation,Sol-gel method,titanium,titanium dioxide,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2013-08-20
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
8.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved