請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59045完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王兆麟(Jaw-Lin Wang) | |
| dc.contributor.author | Che-Hao Tsui | en |
| dc.contributor.author | 崔哲豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:46:33Z | - |
| dc.date.available | 2013-09-02 | |
| dc.date.copyright | 2013-09-02 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-20 | |
| dc.identifier.citation | 1. Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine 2006;31:2151-61.
2. Yu J, Winlove PC, Roberts S, et al. Elastic fibre organization in the intervertebral discs of the bovine tail. Journal of anatomy 2002;201:465-75. 3. Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 1990;15:402-10. 4. Humzah MD, Soames RW. Human intervertebral disc: structure and function. The Anatomical record 1988;220:337-56. 5. Roberts S, Menage J, Urban JP. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 1989;14:166-74. 6. Kuo YW, Wang JL. Rheology of intervertebral disc: an ex vivo study on the effect of loading history, loading magnitude, fatigue loading, and disc degeneration. Spine 2010;35:E743-52. 7. Mow VC, Kuei SC, Lai WM, et al. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. Journal of biomechanical engineering 1980;102:73-84. 8. Boxberger JI, Auerbach JD, Sen S, et al. An in vivo model of reduced nucleus pulposus glycosaminoglycan content in the rat lumbar intervertebral disc. Spine 2008;33:146-54. 9. Lotz JC, Hadi T, Bratton C, et al. Anulus fibrosus tension inhibits degenerative structural changes in lamellar collagen. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2008;17:1149-59. 10. Urban JP, Roberts S. Degeneration of the intervertebral disc. Arthritis research & therapy 2003;5:120-30. 11. Sivan SS, Hayes AJ, Wachtel E, et al. Biochemical composition and turnover of the extracellular matrix of the normal and degenerate intervertebral disc. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2013. 12. Thompson JP, Pearce RH, Schechter MT, et al. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 1990;15:411-5. 13. Michalek AJ, Buckley MR, Bonassar LJ, et al. The effects of needle puncture injury on microscale shear strain in the intervertebral disc annulus fibrosus. The spine journal : official journal of the North American Spine Society 2010;10:1098-105. 14. Korecki CL, Costi JJ, Iatridis JC. Needle puncture injury affects intervertebral disc mechanics and biology in an organ culture model. Spine 2008;33:235-41. 15. Wang JL, Wu TK, Lin TC, et al. Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc. Spine 2008;33:1863-9. 16. Reiser KM. Nonenzymatic glycation of collagen in aging and diabetes. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine 1998;218:23-37. 17. Robinson D, Mirovsky Y, Halperin N, et al. Changes in proteoglycans of intervertebral disc in diabetic patients. A possible cause of increased back pain. Spine 1998;23:849-55; discussion 56. 18. Verzijl N, DeGroot J, Bank RA, et al. Age-related accumulation of the advanced glycation endproduct pentosidine in human articular cartilage aggrecan: the use of pentosidine levels as a quantitative measure of protein turnover. Matrix biology : journal of the International Society for Matrix Biology 2001;20:409-17. 19. Sivan SS, Tsitron E, Wachtel E, et al. Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs. The Biochemical journal 2006;399:29-35. 20. Pokharna HK, Phillips FM. Collagen crosslinks in human lumbar intervertebral disc aging. Spine 1998;23:1645-8. 21. Jazini E, Sharan AD, Morse LJ, et al. Alterations in T2 relaxation magnetic resonance imaging of the ovine intervertebral disc due to nonenzymatic glycation. Spine 2012;37:E209-15. 22. Wagner DR, Reiser KM, Lotz JC. Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions. Journal of biomechanics 2006;39:1021-9. 23. Yokosuka K, Park JS, Jimbo K, et al. Advanced glycation end-products downregulating intervertebral disc cell production of proteoglycans in vitro. Journal of neurosurgery. Spine 2006;5:324-9. 24. Spencer DL, Miller JA, Schultz AB. The effects of chemonucleolysis on the mechanical properties of the canine lumbar disc. Spine 1985;10:555-61. 25. Barbir A, Michalek AJ, Abbott RD, et al. Effects of enzymatic digestion on compressive properties of rat intervertebral discs. Journal of biomechanics 2010;43:1067-73. 26. Sedowofia KA, Tomlinson IW, Weiss JB, et al. Collagenolytic enzyme systems in human intervertebral disc: their control, mechanism, and their possible role in the initiation of biomechanical failure. Spine 1982;7:213-22. 27. Ando T, Kato F, Mimatsu K, et al. Effects of chondroitinase ABC on degenerative intervertebral discs. Clinical orthopaedics and related research 1995:214-21. 28. Boxberger JI, Orlansky AS, Sen S, et al. Reduced nucleus pulposus glycosaminoglycan content alters intervertebral disc dynamic viscoelastic mechanics. Journal of biomechanics 2009;42:1941-6. 29. Hoogendoorn R, Doulabi BZ, Huang CL, et al. Molecular changes in the degenerated goat intervertebral disc. Spine 2008;33:1714-21. 30. Sakuma M, Fujii N, Takahashi T, et al. Effect of chondroitinase ABC on matrix metalloproteinases and inflammatory mediators produced by intervertebral disc of rabbit in vitro. Spine 2002;27:576-80. 31. Haglund L, Moir J, Beckman L, et al. Development of a bioreactor for axially loaded intervertebral disc organ culture. Tissue engineering. Part C, Methods 2011;17:1011-9. 32. Junger S, Gantenbein-Ritter B, Lezuo P, et al. Effect of limited nutrition on in situ intervertebral disc cells under simulated-physiological loading. Spine 2009;34:1264-71. 33. Seol D, Choe H, Ramakrishnan PS, et al. Organ culture stability of the intervertebral disc: Rat versus rabbit. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 2013;31:838-46. 34. Chen WH, Liu HY, Lo WC, et al. Intervertebral disc regeneration in an ex vivo culture system using mesenchymal stem cells and platelet-rich plasma. Biomaterials 2009;30:5523-33. 35. Lee CR, Iatridis JC, Poveda L, et al. In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine 2006;31:515-22. 36. Korecki CL, MacLean JJ, Iatridis JC. Characterization of an in vitro intervertebral disc organ culture system. European spine journal : official publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society 2007;16:1029-37. 37. Gantenbein B, Grunhagen T, Lee CR, et al. An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs. Spine 2006;31:2665-73. 38. 莊壹婷. 脊椎牽引對於嚴重退化椎間盤之養分傳輸影響. 臺灣大學醫學工程學研究所學位論文: 臺灣大學, 2012:1-40. 39. 張雅晴. 使用全椎間盤培養系統之體外實驗探討外生性交聯療法對治療退化性椎間盤之可能性. 臺灣大學醫學工程學研究所學位論文: 臺灣大學, 2011:1-48. 40. Risbud MV, Izzo MW, Adams CS, et al. An organ culture system for the study of the nucleus pulposus: description of the system and evaluation of the cells. Spine 2003;28:2652-8; discussion 8-9. 41. Soltz MA, Ateshian GA. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. Journal of biomechanics 1998;31:927-34. 42. Farndale RW, Sayers CA, Barrett AJ. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connective tissue research 1982;9:247-8. 43. Reddy GK, Enwemeka CS. A simplified method for the analysis of hydroxyproline in biological tissues. Clinical biochemistry 1996;29:225-9. 44. Iatridis JC, ap Gwynn I. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. Journal of biomechanics 2004;37:1165-75. 45. Jackson AR, Travascio F, Gu WY. Effect of mechanical loading on electrical conductivity in human intervertebral disk. Journal of biomechanical engineering 2009;131:054505. 46. Stern WE, Coulson WF. Effects of collagenase upon the intervertebral disc in monkeys. Journal of neurosurgery 1976;44:32-44. 47. Zhang Y, Drapeau S, An HS, et al. Histological features of the degenerating intervertebral disc in a goat disc-injury model. Spine 2011;36:1519-27. 48. Yerramalli CS, Chou AI, Miller GJ, et al. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomechanics and modeling in mechanobiology 2007;6:13-20. 49. Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. The Journal of clinical investigation 1996;98:996-1003 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59045 | - |
| dc.description.abstract | 目的:本研究目的在建立一套體外培養系統之椎間盤退化模型。本研究使用三種椎間盤退化方法,分別為醣化作用(Glycation)、膠原蛋白酶解(Collagenase)與多醣酶解(Chondroitinase),研究之目的在觀察椎間盤在此三種退化方法處理後之生物力學與生物化學性質之影響。
背景介紹:椎間盤退化是人體老化的自然現象之一,也是引起脊椎病痛的來源之一。退化椎間盤的治療一直是學界與醫界共同努力的目標,一般而言,研究新的藥物須先經過生物實驗,在驗證藥物在生物體內的有效性與安全性之後,才能進入臨床實驗。一般動物實驗分成小動物實驗與大動物實驗,小動物生命週期短,較易取得退化性椎間盤,但與人體椎間盤的型態差異較大,所以在生物力學上的模擬差異較大;若使用大動物椎間盤進行研究,雖然型態與人體椎間盤較類似,但生命週期較長,若要取得退化性椎間盤,則須經長時間畜養,耗費較高。因此,若能建立一套離體(Ex Vivo)的大動物椎間盤退化模型,將有助於實驗資源的降低,並應用於大量篩選或測試新的治療方法。椎間盤退化受到許多複雜因子影響,當年齡老化,人體內源性(Endogenous)醣化作用增加,會導致椎間盤內醣類堆積與水分流失。惟,目前一般的椎間盤退化方法是利用注入酶解藥物,造成基質降解方式建立模型,但此一方法,無法模擬上述醣化現象。因此建立一適當且合理的椎間盤退化模型有其必要性。 材料與方法:本研究使用六個月大豬隻之胸椎第二至第七節(T2~T7)椎間盤,為保持試樣內細胞之活性,實驗於豬隻屠宰後四小時內進行。本研究使用三種方式建立椎間盤退化模型,分別是使用核醣溶液(Ribose)模擬基質醣化、第二型膠原蛋白酶(Type II collagenase)模擬第二型膠原蛋白降解、與硫酸軟骨酶(Chondroitinase ABC)模擬多醣降解。椎間盤退化模型會於試樣處理完分別打入0.5ml, 0.6M的核醣溶液與0.5ml, 50U/ml的第二型膠原蛋白酶以及0.5ml, 0.25U/ml的硫酸軟骨酶。各組別皆會放入生物培養箱中培養七天,在第二天與第七天進行潛變測試(Creep test);衝擊測試(Impulse test)會在第七天潛變測試完12小時後進行,最後對生化性質包含椎間盤水分含量、組織切片、掃描式電子顯微鏡( Scanning electron microscope , SEM )、醣胺聚醣( Glycosaminoglycan , GAG )與膠原蛋白( Collagen )含量進行量測。 結果:椎間盤醣化組,在負載後椎間盤聚合模數下降,勁度無明顯改變,液體滲透性與阻尼係數皆下降,椎間環層與層排列無明顯改變,組織間隙與纖維孔隙增加,椎間盤內組織水分、醣胺聚醣與膠原蛋白含量下降;第二型膠原蛋白酶組,在負載後椎間盤聚合模數與勁度上升,而液體滲透度與阻尼係數下降,椎間環層與層排列不規則,纖維孔隙增加,內層椎間環明顯外突,椎間盤內組織水分、醣胺聚醣與膠原蛋白含量下降;硫酸軟骨酶組,在負載後椎間盤聚合模數下降,勁度無明顯改變,液體滲透度與阻尼係數下降,椎間環層與層排列不整齊,組織間隙與纖維孔隙增加,內層椎間環向外突出,椎間盤內組織水分與醣胺聚醣含量明顯下降。小結:椎間盤醣化作用增加,堆積於基質間的最終醣化產物隨之增多,使椎間盤水分以及吸震能力下降;第二型膠原蛋白酶切斷椎間盤內第二型膠原蛋白,使椎間盤的強度、保水能力、吸震能力下降;硫酸軟骨素酶破壞蛋白多醣的結構,使椎間盤保水能力、吸震能力下降。 結論:本研究將椎間盤退化模型實驗結果與文獻中人體退化椎間盤進行比較,在第二型膠原蛋白酶椎間盤退化模型上,與人體退化椎間盤的生物力學與生物化學趨勢相同,但結構上較人體退化椎間盤輕微。因此,本研究之結果較適合應用於輕微椎間盤退化之臨床應用。 | zh_TW |
| dc.description.abstract | Objective: To investigate the biomechanical and biochemical properties of intervertebral discs treated with ribose, collagenase and chondroitinase. The knowledge of this study is helpful for the development of an ex-vivo big-sized animal disc degeneration model.
Summary of background data: Disc degeneration is a reason to induce low back pain in aging population. Treatments of degenerative disc diseases have been studied in both academic and medical communities. In general, the safety and efficacy of a new treatment has to be validated with in-vivo animal studies before clinical trials. Due to short life cycles, creating degeneration discs is easier in small-sized animals than in big-sized ones. However, discs of small-sized animals are less similar to human being’s, and thus the results of small-sized animal studies are less clinically applicable. On the other hand, creating degenerative discs in big-sized animals is time and money consuming. Therefore, screening treatment candidates with an ex-vivo big-sized animal degeneration disc model before in-vivo animal studies will help to cut down experimental expanses. As for now, most ex-vivo animal degeneration disc models are induced by digestive enzymes, such as collagenase and chondroitinase. Both of them are unable to simulate the accumulation of advanced glycation end-products (AGEs) in degenerative discs. Methods: Six-month old porcine thoracic discs (T2~T7) were used as specimens. In order to preserve viable cells in discs, the specimens were dissected within 4 hrs after pigs were slaughtered. To simulate matrix glycation, collagen degradation, and proteoglycan depletion in degenerative discs, ribose solution (0.5ml, 0.6M), Type II collagenase (0.5ml, 50U/ml) and chondrotinase ABC (ChABC, 0.5ml, 0.25U/ml) were individually injected into one of the three disc groups. A creep test was applied on all specimens on Day 2 and Day 7 to obtain the aggregate modulus and permeability of specimens. An impulse test was performed 12 hrs after the creep test on Day 7 to evaluate the stiffness and damping coefficient of specimens. In addition, biochemical properties (i.e. water, glycosaminoglycan (GAG) and collagen content), anulus histology and micro structure were inspected on Day 7. Results: After injection of ribose/ChABC, the aggregate modulus, permeability and damping coefficient of disc decreased. After injection of Type II collagenase, the aggregate modulus and stiffness of disc increased, but the permeability and damping coefficient of disc decreased. All chemical solutions increased pores in anulus, caused inner anulus delamination and decreased disc water and GAG content. Only ribose and Type II collagenase reduced collagen content of disc. Discussion and Conclusion: Both of AGEs accumulation and proteoglycan depletion of disc matrix decreases disc stiffness, energy dissipation capacity, water/GAG content and anulus fibrosus integrity. AGEs further reduced collagen content. Type II collagen degradation of disc matrix increases disc stiffness, but decreases energy dissipation capacity, water/GAG/collagen content, and anulus fibrosus integrity. Among the three degeneration-induced treatments in this study, the biomechanical and biochemical properties of the discs treated by Type II collagenase are more similar to those of human discs with mild-level degeneration. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:46:33Z (GMT). No. of bitstreams: 1 ntu-102-R00548020-1.pdf: 2776788 bytes, checksum: 07ce41481d5ae3aa22603e73d431e7a9 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 目 錄
誌謝 i 中文摘要 ii Abstract iv 圖目錄 ix 表目錄 x 第一章 緒論 1 1.1 椎間盤生理構造 1 1.2 椎間盤力學性質 2 1.2.1 靜態力學性質 3 1.2.2 動態力學性質 3 1.3 椎間盤生物化學組成 4 1.3.1 醣胺聚醣 4 1.3.2 膠原蛋白 4 1.4 退化性椎間盤 5 1.4.1 病理特徵 5 1.4.2 模擬退化模型 6 1.5 椎間盤培養系統 8 1.6 細胞存活率 (Cell viability) 8 1.7 研究動機與實驗目的 9 1.8 實驗假說 10 第二章 實驗材料方法 11 2.1 椎間盤培養系統 11 2.1.1 生物培養器 11 2.1.2 養分傳輸系統 12 2.1.3 動力系統 13 2.1.4 循環負載系統 14 2.2 生物力學測試平台 15 2.2.1 潛變測試機台(Creep Testing Apparatus) 15 2.2.2 連續式衝擊測試機台(Continuous Impact Testing Apparatus) 16 2.3 試樣準備 17 2.4 實驗流程 17 2.5 實驗分析方法 18 2.5.1 潛變測試 18 2.5.2 衝擊測試 19 2.5.3 水分含量 20 2.5.4 組織染色切片 20 2.5.5 醣胺聚醣含量 21 2.5.6 膠原蛋白含量 21 2.5.7 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 22 2.6 統計分析方法 23 第三章 實驗結果 24 3.1 生物力學性質測試結果 24 3.1.1 椎間盤高度 24 3.1.2 潛變測試 25 3.1.3 衝擊測試 27 3.2 生物化學性質測試結果 29 3.2.1 水分含量 29 3.2.2 組織染色切片 31 3.2.3 醣胺聚醣含量 33 3.2.4 膠原蛋白含量 34 3.2.5 掃描式電子顯微鏡 36 第四章 綜合討論 38 4.1 實驗結果討論 38 4.2 退化模型 40 4.3 實驗限制 41 第五章 結論與未來展望 42 5.1 結論 42 5.2 未來展望 42 第六章 參考文獻 44 | |
| dc.language.iso | zh-TW | |
| dc.subject | 第二型膠原蛋白酶 | zh_TW |
| dc.subject | 硫酸軟骨酶 | zh_TW |
| dc.subject | 醣化作用 | zh_TW |
| dc.subject | 退化模型 | zh_TW |
| dc.subject | 椎間盤 | zh_TW |
| dc.subject | glycation | en |
| dc.subject | degeneration model | en |
| dc.subject | type II collagenase | en |
| dc.subject | chrondroitinase ABC | en |
| dc.subject | ribose | en |
| dc.subject | Intervertebral disc | en |
| dc.title | 醣化作用與酶解對椎間盤在生物力學與生物化學性質之影響 | zh_TW |
| dc.title | Effect of Glycation and Enzymatic Digestion on Biomechanical and Biochemical Properties of Intervertebral Disc | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧文炳,趙本秀,蕭仲凱 | |
| dc.subject.keyword | 椎間盤,退化模型,第二型膠原蛋白酶,硫酸軟骨酶,醣化作用, | zh_TW |
| dc.subject.keyword | Intervertebral disc,degeneration model,type II collagenase,chrondroitinase ABC,ribose,glycation, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
