請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5902完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭智馨 | |
| dc.contributor.author | Chung-Yu Lee | en |
| dc.contributor.author | 李俊佑 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:18:12Z | - |
| dc.date.available | 2013-08-26 | |
| dc.date.available | 2021-05-16T16:18:12Z | - |
| dc.date.copyright | 2013-08-26 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | 王淑媚 (2009) 鰲峰山森林復育之初探。國立台灣大學森林環境暨資源學系碩士班。邱祈榮教授指導。
林素禎、洪崑煌、吳繼光 (2000)。囊叢枝內生菌根菌在臺灣代表性土壤中之分布。中華農業研究 49(4):65-80。 林朝欽、邱祈榮、陳明義、蕭其文、曾仁鍵 (2005) 大肚山地區林火危險預測模式之推導。中華林學季刊 38 (1): 83-94. 宋華葳 (2003) 利用鉬藍法測定有效性磷的可能誤差探討。國立台灣大學農業化學研究所碩士論文。何聖賓教授指導。 行政院農委會林務局 (2011)。育林手冊。行政院農委會。台北。 邱祈榮、曾仁健、楊棋明、黃文達 (2006) 灰系統理論在生物學之應用 (5):大肚山氣候因子對其林火頻率與面積之灰關聯分析。作物、環境與生物資訊 3: 355 - 360。 葉怡君 (2007) 叢枝菌根菌 Glomus etunicatum及根瘤菌 Bradyrhizobium elkanii對不同介質培育相思樹苗木之生長及生理特性效應。國立嘉義大學森林暨資然研究所碩士班。李明仁教授指導。 黃于軒 (2012) 重複性火燒對淨初級生產量及土壤微生物的影響。國立台灣大學森林環境暨資源學系碩士班。鄭智馨教授指導。 蔡智豪 (2005) 台中大肚山竹坑北坑樣帶四年內植群分布與環境因子相關性之研究。楊國禎教授指導。靜宜大學生態學研究所。 楊昭粦、葉進貴 (1956) 利用林間地栽培天竺草改良牧野試驗。中華農業研究 6 (2): 51-56。 Abbott, L.K., Robson, A.D., 1991. Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agriculture, Ecosystems and Environment 35, 121-150. Aguilar-Fernandez, M., Jaramillo, V.J., Varela-Fregoso, L., Gavito, M.E., 2009. Short-term consequences of slash-and-burn practices on the arbuscular mycorrhizal fungi of a tropical dry forest. Mycorrhiza 19, 179-186. Allen, E.B., Rincon, E., Allen, M.F., Perez-Jimenez, A., Huante, P., 1998. Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in Mexico. Biotropica 30, 261-274. Allsopp, N., Stock, W.D., 1994. VA mycorrhizal infection in relation to edaphic characteristics and disturbance regime in three lowland plant communities in the south-western Cape, South Africa. Journal of Ecology 82, 271-279. An, Z.Q., Hendrix, J.W., Hershman, D.E., Ferriss, R.S., Henson, G.T., 1993. The influence of crop rotation and soil fumigation on a mycorrhizal fungal community associated with soybean. Mycorrhiza 3, 171-182. Anderson, R.C., Menges, E.S., 1997. Effects of fire on sandhill herbs: Nutrients, mycorrhizae, and biomass allocation. American Journal of Botany 84, 938-948. Antonsen, H., Olsson, P.A., 2005. Relative importance of burning, mowing and species translocation in the restoration of a former boreal hayfield: responses of plant diversity and the microbial community. Journal of Applied Ecology 42, 337-347. Antunes, P.M., Lehmann, A., Hart, M.M., Baumecker, M., Rillig, M.C., 2012. Long-term effects of soil nutrient deficiency on arbuscular mycorrhizal communities. Functional Ecology 26, 532-540. Azul, A.M., Ramos, V., Sales, F., 2010. Early effects of fire on herbaceous vegetation and mycorrhizal symbiosis in high altitude grasslands of Natural Park of Estrela Mountain (PNSE). Symbiosis 52, 113-123. Bellgard, S.E., Whelan, R.J., Muston, R.M., 1994. The impact of wildfire on vesicular-arbuscular mycorrhizal fungi and their potential to influence the re-establishment of post-fire plant communities. Mycorrhiza 4, 139-146. Bentivenga, S.P., Hetrick, B.A.D., 1991. Relationship between mycorrhizal activity, burning, and plant productivity in tallgrass prairie. Canadian Journal of Botany 69, 2597-2602. Blair, J.M., 1997. Fire, N availability, and plant response in grasslands: A test of the transient maxima hypothesis. Ecology 78, 2359-2368. Bradley, B.A., Houghton, R.A., Mustard, J.F., Hamburg, S.P., 2006. Invasive grass reduces aboveground carbon stocks in shrublands of the Western US. Global Change Biology 12, 1815-1822. Braz, T.G.D.S., da Fonseca, D.M., de Freitas, F.P., Martuscello, J.A., Santos, M.E.R., Santos, M.V., Pereira, V.V., 2011. Morphogenesis of Tanzania guinea grass under nitrogen doses and plant densities. Revista Brasileira de Zootecnia 40, 1420-1427. Broaddus, G.M., York, J.E., Hoseley, J.M., 1965. Factors affecting the levels of nitrate nitrogen in cured tobacco leaves. Tobacco Science 9, 149-157. Brooks, M.L., D'Antonio, C.M., Richardson, D.M., Grace, J.B., Keeley, J.E., DiTomaso, J.M., Hobbs, R.J., Pellant, M., Pyke, D., 2004. Effects of invasive alien plants on fire regimes. BioScience 54, 677-688. Bundrett, M.C., Ashwath, N., Jasper, D.A., 1996. Mycorrhizas in the Kakadu region of tropical Australia: II. Propagules of mycorrhizal fungi in disturbed habitats. Plant and Soil 184, 173-184. Cairney, J.W.G., Bastias, B.A., 2007. Influences of fire on forest soil fungal communities. Canadian Journal of Forest Research 37, 207-215. Certini, G., 2005. Effects of fire on properties of forest soils: A review. Oecologia 143, 1-10. Chang, K.P., 2001. Quantification of the contribution by symbiotic nitrogen fixation in Acacia confusa Merr. seedlings using 15N isotope dilution methods. Bulletin of National Pingtung University of Science and Technology 10, 1-6. Cheng, C.-H., Chen, Y.-S., Huang, Y.-H., Chiou, C.-R., Lin, C.-C., Menyailo, O.V., 2013. Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient. Journal of Geophysical Research: Biogeosciences 118, 215-225. Conrad, A.O., Segraves, K.A., 2013. Mycorrhizal colonization of Palafoxia feayi (Asteraceae) in a pyrogenic ecosystem. Mycorrhiza 23, 243-249. Cook, G.D., 2001. Effects of frequent fires and grazing on stable nitrogen isotope ratios of vegetation in northern Australia. Austral Ecology 26, 630-636. D'Antonio, C.M., Vitousek, P.M., 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23, 63-87. Dhilhon, S.S., Anderson, R.C., 1993. Growth dynamics and associated mycorrhizal fungi of little bluestem grass [Schizachyrium scoparium (Michx.) Nash] on burned and unburned sand prairies. New Phytologist 123, 77-91. Dhillion, S.S., Anderson, R.C., Liberta, A.E., 1988. Effect of fire on the mycorrhizal ecology of little bluestem (Schizachyrium scoparium). Canadian Journal of Botany 66, 706-713. Docherty, K.M., Balser, T.C., Bohannan, B.J.M., Gutknecht, J.L.M., 2011. Soil microbial responses to fire and interacting global change factors in a California annual grassland. Biogeochemistry 109, 63-83. Egerton-Warburton, L.M., Allen, E.B., 2000. Shifts in arbuscular mycorrhizal communities along an anthrogenic nitrogen deposition gradient. Ecological Applications 10, 484-496. Eom, A.H., Hartnett, D.C., Wilson, G.W.T., Figge, D.A.H., 1999. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. American Midland Naturalist 142, 55-70. Evans, R.D., 2001. Physiological mechanisms influencing plant nitrogen isotope composition. Trends in Plant Science 6, 121-126. Fitter, A.H., Nichols, R., 1988. The use of benomyl to control infection by vesicular-arbuscular mycorrhizal fungi. New Phytologist 110, 201-206. Freifelder, R.R., Vitousek, P.M., D'Antonio, C.M., 1998. Microclimate change and effect on fire following forest-grass conversion in seasonally dry tropical woodland. Biotropica 30, 286-297. Fynn, R.W.S., Morris, C.D., Kirkman, K.P., 2005. Plant strategies and trait trade-offs influence trends in competitive ability along gradients of soil fertility and disturbance. Journal of Ecology 93, 384-394. Fynn, R.W.S., O'Connor, T.G., 2005. Determinants of community organization of a South African mesic grassland. Journal of Vegetation Science 16, 93-102. Gomez-Rey, M.X., Couto-Vazquez, A., Garcia-Marco, S., Gonzalez-Prieto, S.J., 2013. Impact of fire and post-fire management techniques on soil chemical properties. Geoderma 195-196, 155-164. Gibson, D.J., Hetrick, B.A.D., 1988. Topographic and fire effects on the composition and abundance of VA-mycorrhizal fungi in tallgrass prairie. Mycologia 80, 433-441. Hart, M.M., Reader, R.J., 2002. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytologist 153, 335-344. Hart, S.C., DeLuca, T.H., Newman, G.S., MacKenzie, M.D., Boyle, S.I., 2005. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. Forest Ecology and Management 220, 166-184. Hartnett, D.C., Potgieter, A.F., Wilson, G.W.T., 2004. Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. African Journal of Ecology 42, 328-337. Hartnett, D.C., Wilson, G.W.T., 2002. The role of mycorrhizas in plant community structure and dynamics: Lessons from grasslands. Plant and Soil 244, 319-331. Haskins, K.E., Gehring, C.A., 2004. Long-term effects of burning slash on plant communities and arbuscular mycorrhizae in a semi-arid woodland. Journal of Applied Ecology 41, 379-388. Hayman, D.S., 1986. Mycorrhizae of nitrogen-fixing legumes. Mircen Journal 2, 121-145. Hernandez, D.L., Hobbie, S.E., 2008. Effects of fire frequency on oak litter decomposition and nitrogen dynamics. Oecologia 158, 535-543. Iglesias, M.T., 2010. Effects of fire frequency on nutrient levels in soils of Aleppo pine forests in southern France. Lazaroa 31, 147-152. Jensen, W.A., 1962. Botanical Histochemisty : Principles and Practice. Freeman, San Francisco, USA. Johnson, N.C., 2010. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New phytologist 185, 631-647. Johnson, N.C., Graham, J.H., Smith, F.A., 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135, 575-586. Johnson, N.C., Wedin, D.A., 1997. Soil carbon, nutrients, and mycorrhizae during conversion of dry tropical forest to grassland. Ecological Applications 7, 171-182. Jones, J.B., 2001. Laboratory guide for conducting soil tests and pant analysis. CRC Press, Florida, USA. Keeney, D.R., Nelson, D.W., 1982. Modified Griess-Ilosvay method. In: Page, A.L. (Ed.), Methods of soil analysis part 2 - Chemical and microbiological properties. Academic Press, New York, USA. , pp. 684-687. Keeney, D.R.N., D. W., 1982. Nitrogen-inorganic forms. In, Methods of soil analysis part 2 - Chemical and microbiological properties. Academic Press, New York, USA. , pp. 643-698. Ketterings, Q.M., Van Noordwijk, M., Bigham, J.M., 2002. Soil phosphorus availability after slash-and-burn fires of different intensities in rubber agroforests in Sumatra, Indonesia. Agriculture, Ecosystems and Environment 92, 37-48. Klironomos, J.N., 2003. Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84, 2292-2301. Klironomos, J.N., Rillig, M.C., Allen, M.F., 1999. Designing belowground field experiments with the help of semi-variance and power analyses. Applied Soil Ecology 12, 227-238. Klopatek, C.C., Debano, L.F., Klopatek, J.M., 1988. Effects of simulated fire on vesicular-arbuscular mycorrhizae in pinyon-juniper woodland soil. Plant and Soil 109, 245-249. Knoepp, J.D., Swank, W.T., 1993. Site preparation burning to improve southern Appalachian pine- hardwood stands: nitrogen responses in soil, soil water, and streams. Canadian Journal of Forest Research 23, 2263-2270. Knorr, M.A., Boerner, R.E., Rillig, M.C., 2003. Glomalin content of forest soils in relation to fire frequency and landscape position. Mycorrhiza 13, 205-210. Koide, R.T., Huenneke, L.F., Hamburg, S.P., Mooney, H.A., 1988. Effects of applications of fungicide, phosphorus and nitrogen on the structure and productivity of an snnual serpentine plant community. Functional Ecology 2, 335-344. Korb, J.E., Johnson, N.C., Covington, W.W., 2003. Arbuscular mycorrhizal propagule densities respond rapidly to Ponderosa pine restoration treatments. Journal of Applied Ecology 40, 101-110. Korb, J.E., Johnson, N.C., Covington, W.W., 2004. Slash pile burning effects on soil biotic and chemical properties and plant establishment: Recommendations for amelioration. Restoration Ecology 12, 52-62. Koske, R.E., Gemma, J.N., 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycological Research 92, 486-488. Liu, Y., Shi, G., Mao, L., Cheng, G., Jiang, S., Ma, X., An, L., Du, G., Collins Johnson, N., Feng, H., 2012. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist 194, 523-535. Maherali, H., Klironomos, J.N., 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746-1748. Marcos, E., Villalon, C., Calvo, L., Luis-Calabuig, E., 2009. Short-term effects of experimental burning on soil nutrients in the Cantabrian heathlands. Ecological Engineering 35, 820-828. McGonigle, T.P., Miller, M.H., Evans, D.G., Fairchild, G.L., Swan, J.A., 1990. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytologist 115, 495-501. McKenney, M.C., Lindsey, D.L., 1987. Improved Method for Quantifying Endomycorrhizal Fungi Spores from Soil. Mycologia 79, 779-782. Medve, R.J., 1985. The effects of fire on root hairs and mycorrhizae of Liatris spicata. The Ohio Journal of Science 85, 4. Mehlich, A., 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis 15, 1409-1416. Mohammad, M.J., Hamad, S.R., Malkawi, H.I., 2003. Population of arbuscular mycorrhizal fungi in semi-arid environment of Jordan as influenced by biotic and abiotic factors. Journal of Arid Environments 53, 409-417. Murphy, J., Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27, 31-36. Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F., 1999. Fire effects on belowground sustainability: A review and synthesis. Forest Ecology and Management 122, 51-71. Nelson, D.W., 1983. Determination of ammonium in KCl extracts of soils by the salicylate method 1. Communications in Soil Science and Plant Analysis 14, 1051-1062. Ngoze, S., Riha, S., Lehmann, J., Verchot, L., Kinyangi, J., Mbugua, D., Pell, A., 2008. Nutrient constraints to tropical agroecosystem productivity in long-term degrading soils. Global Change Biology 14, 2810-2822. O'Dea, M.E., 2007. Fungal mitigation of soil erosion following burning in a semi-arid Arizona savanna. Geoderma 138, 79-85. Ojima, D.S., Schimel, D.S., Parton, W.J., Owensby, C.E., 1994. Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24, 67-84. Oliveras, I., Meirelles, S.T., Hirakuri, V.L., Freitas, C.R., Miranda, H.S., Pivello, V.R., 2013. Effects of fire regimes on herbaceous biomass and nutrient dynamics in the Brazilian savanna. International Journal of Wildland Fire 22, 368-380. Opik, M., Metsis, M., Daniell, T.J., Zobel, M., Moora, M., 2009. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New phytologist 184, 424-437. Panwar, V., Meghvansi, M.K., Siddiqui, S., 2011. Short-term temporal variation in sporulation dynamics of arbuscular mycorrhizal (AM) fungi and physico-chemical edaphic properties of wheat rhizosphere. Saudi Journal of Biological Sciences 18, 247-254. Pattinson, G.S., Hammill, K.A., Sutton, B.G., McGee, P.A., 1999. Simulated fire reduces the density of arbuscular mycorrhizal fungi at the soil surface. Mycological Research 103, 491-496. Paul, N.D., Ayres, P.G., Wyness, L.E., 1989. On the use of fungicides for experimentation in natural vegetation. Functional Ecology 3, 759-769. Pereira, V.V., da Fonseca, D.M., Martuscello, J.A., Cecon, P.R., Santos, M.V., dos Santos Braz, T.G., 2012. Biomass accumulation in mombasa guineagrass plants under different levels of nitrogen supply and plant densities. Revista Brasileira de Zootecnia 41, 1118-1126. Picone, C., 2000. Diversity and abundance of arbuscular mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32, 734-750. Pinior, A., Grunewaldt-Stocker, G., Von Alten, H., Strasser, R.J., 2005. Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, proline content and visual scoring. Mycorrhiza 15, 596-605. Rashid, A., Ahmed, T., Ayub, N., Khan, A.G., 1997. Effect of forest fire on number, viability and post-fire re-establishment of arbuscular mycorrhizae. Mycorrhiza 7, 217-220. Reeuwijk, L.v., 2002. Procedures for soil analysis. In, Procedures for soil analysis. Technical Paper/International Soil Reference and Information Centre, Wageningen, Netherlands. Reich, P.B., Peterson, D.W., Wedin, D.A., Wrage, K., 2001. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82, 1703-1719. Rillig, M.C., 2004. Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecology Letters 7, 740-754. Robinson, D., 2001. δ15N as an integrator of the nitrogen cycle. Trends in Ecology and Evolution 16, 153-162. Romanya, J., Khanna, P.K., Raison, R.J., 1994. Effects of slash burning on soil phosphorus fractions and sorption and desorption of phosphorus. Forest Ecology and Management 65, 89-103. Rossiter, N.A., Setterfield, S.A., Douglas, M.M., Hutley, L.B., 2003. Testing the grass-fire cycle: Alien grass invasion in the tropical savannas of northern Australia. Diversity and Distributions 9, 169-176. Saa, A., Trasar-Cepeda, M.C., Gil-Sotres, F., Carballas, T., 1993. Changes in soil phosphorus and acid phosphatase activity immediately following forest fires. Soil Biology and Biochemistry 25, 1223-1230. Schenck, N.C., Perez, Y., 1990. Manual for the identification of VA mycorrhizal fungi. Synergistic Publications, Gainesville, Fl. Silva, D.M., Batalha, M.A., 2008. Soil–vegetation relationships in cerrados under different fire frequencies. Plant and Soil 311, 87-96. Simard, D.G., Fyles, J.W., Pare, D., Nguyen, T., 2001. Impacts of clearcut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Canadian Journal of Soil Science 81, 229-237. Singh, R., Kumar, N., Rana, N.S., 2000. Response of rainfed guinea grass (Panicum maximum) to bio-fertilizers inoculation and nitrogen. Indian Journal of Agronomy 45, 205-209. Smith, M.D., Hartnett, D.C., Rice, C.W., 2000. Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biology and Biochemistry 32, 935-946. Smith, S.E., Read, D.J., 2008. Mycorrhizal symbiosis. Academic Press. Smith, S.E., Smith, F.A., 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual review of plant biology 62, 227-250. Sturmer, S.L., Siqueira, J.O., 2011. Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in western Brazilian Amazon. Mycorrhiza 21, 255-267. Tedder, M., Morris, C., Fynn, R., Kirkman, K., 2012. Do soil nutrients mediate competition between grasses and Acacia saplings? Grassland Science 58, 238-245. Thomas, A.D., Walsh, R.P.D., Shakesby, R.A., 2000. Post-fire forestry management and nutrient losses in eucalyptus and pine plantations, northern Portugal. Land Degradation and Development 11, 257-271. Tomkins, I.B., Kellas, J.D., Tolhurst, K.G., Oswin, D.A., 1991. Effects of fire intensity on soil chemistry in a eucalypt forest. Australian Journal of Soil Research 29, 25-47. Treseder, K.K., Allen, M.F., 2002. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytologist 155, 507-515. Treseder, K.K., Mack, M.C., Cross, A., 2004. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecological Applications 14, 1826-1838. Tsai, H., Hseu, Z.-Y., Huang, S.-T., Huang, W.-S., Chen, Z.-S., 2010. Pedogenic properties of surface deposits used as evidence for the type of landform formation of the Tadu tableland in central Taiwan. Geomorphology 114, 590-600. Tsvuura, Z., Kirkman, K.P., 2013. Yield and species composition of a mesic grassland savanna in South Africa are influenced by long-term nutrient addition. Austral Ecology, in press. Tucker, C.M., Cadotte, M.W., 2013. Fire variability, as well as frequency, can explain coexistence between seeder and resprouter life histories. Journal of Applied Ecology, in press. Urcelay, C., Diaz, S., 2003. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters 6, 388-391. Van Der Heijden, M.G.A., Klironomos, J.N., Ursic, M., Moutoglis, P., Streitwolf-Engel, R., Boller, T., Wiemken, A., Sanders, I.R., 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69-72. Vilarino, A., Arines, J., 1991. Numbers and viability of vesicular-arbuscular fungal propagules in field soil samples after wildfire. Soil Biology and Biochemistry 23, 1083-1087. Vilarino, A., Arines, J., 1992. The influence of aqueous extracts of burnt or heated soil on the activity of vesicular-arbuscular mycorrhizal fungi propagules. Mycorrhiza 1, 79-82. Violi, H.A., Barrientos-Priego, A.F., Wright, S.F., Escamilla-Prado, E., Morton, J.B., Menge, J.A., Lovatt, C.J., 2008. Disturbance changes arbuscular mycorrhizal fungal phenology and soil glomalin concentrations but not fungal spore composition in montane rainforests in Veracruz and Chiapas, Mexico. Forest Ecology and Management 254, 276-290. Wan, S., Hui, D., Luo, Y., 2001. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta-analysis. Ecological Applications 11, 1349-1365. Wang, F., Li, J., Zou, B., Xu, X., Li, Z., 2013. Effect of Prescribed Fire on Soil Properties and N Transformation in Two Vegetation Types in South China. Environmental management. Williams, R.J., Hallgren, S.W., Wilson, G.W.T., 2012. Frequency of prescribed burning in an upland oak forest determines soil and litter properties and alters the soil microbial community. Forest Ecology and Management 265, 241-247. Wilson, G.W., Rice, C.W., Rillig, M.C., Springer, A., Hartnett, D.C., 2009. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters 12, 452-461. Wright, R.J., Hart, S.C., 1997. Nitrogen and phosphorus status in a Ponderosa pine forest after 20 years of interval burning. Ecoscience 4, 526-533. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5902 | - |
| dc.description.abstract | 入侵植物─火燒境況循環所引起的重複火燒 (repeated fire),已成為近年來重要的生態問題。重複火燒不僅造成植群的改變,也可能影響原有的土壤有效性養分及叢枝菌根菌 (arbuscular mycorrhizal fungi)的族群或群落,因而進一步改變生態功能以及植物間的競爭優勢。過去研究雖已顯示入侵植物─火燒境況循環對植群的影響,然而,較少研究去探討重複火燒對土壤養分與叢枝菌根菌的影響,以及其背後的機制和對入侵植物優勢的影響。本研究以台灣中部大肚山台地的大黍 (Panicum maximum) 入侵相思樹 (Acacia confusa) 保安林所引起的重複火燒為例,探討在重複火燒對土壤養分、叢枝菌根菌及入侵植物生長的影響。研究目的包括: (1) 瞭解重複火燒對土壤養分、叢枝菌根菌孢子豐度、群落組成及根內感染率 (percentage of root length colonized, RLC) 的影響;(2) 瞭解重複火燒影響叢枝菌根菌的機制;(3) 比較不同火燒序列階段,大黍與相思樹的生長表現的差異,並瞭解大黍生長表現與土壤養分、叢枝菌根菌的關係。研究結果顯示,重複火燒顯著改變土壤養分,經多次火燒的大黍草原土壤有較高的有效性鉀、鈣、鎂及pH值,相對的,其土壤交換性無機態氮及有效性磷卻通常顯著最低。重複火燒也明顯降低叢枝菌根菌的孢子豐度,並改變群落的組成,使群落組成從Glomus為主,逐漸變成Glomus和Acaulospora並存的情況。然而,孢子豐度及群落的差異並不總是顯著。我們推測菌根菌的火燒適應能力、沖蝕、土壤pH值及氮有效性是孢子豐度減少的可能原因,而群落組成的變化則與火燒次數及氮有效性有關。大黍的RLC也隨長期的重複火燒而明顯減少 (僅於Aug 2012顯著)。叢枝菌根菌群落及RLC的改變,皆暗示長期重複火燒之下,叢枝菌根的共生功能已逐漸改變。盆缽試驗進一步顯示,大黍在長時間重複火燒土壤的生長表現,顯著低於短時間重複火燒土壤或原生相思樹的土壤。施加氮肥能明顯提高大黍的生物量,但對各土壤的大黍生長表現的影響並無差異。然而,偏低的RLC以及菌根抑制實驗 (施加免賴得),暗示叢枝菌根對於大黍的重要性可能低於土壤養分。相思樹盆缽試驗顯示,相思樹不論在長期重複火燒土壤或相思樹土壤均有一致的生長表現,暗示相思樹並不受到土壤養分及叢枝菌根改變的影響。總結來說,長期的重複火燒,明顯改變大肚山台地地區的土壤養分性質、叢枝菌根菌的孢子豐度、群落組成及RLC,而土壤氮、磷肥力的劣化可能已減弱入侵植物─火燒境況正回饋循環,並降低了大黍的入侵優勢。 | zh_TW |
| dc.description.abstract | Repeated fire, caused by invasive plant - fire regime positive feedback cycle, has become an ecological issue in recent years. In addition to the obvious vegetation conversion, repeated fire may also affect soil available nutrients and arbuscular mycorrhizal fungi (AMF), and subsequently alter soil function and plant competition. Studies have shown the effects of invasive plant – fire regime on plant community composition. However, few studies aimed to investigate the repeated fire effects on soil available nutrients and AMF, and even fewer studies tried to unravel the underlying mechanism and their roles in plant competition. We took the Acacia protected forest (Acacia confusa) which underwent repeated fire initiated by Guinea grass (Panicum maximum) invasion at Dadu tableland as example, and aimed to investigate the repeated fire effects on soil nutrients, AMF and invasive plant growth. Our study aimed (1) to understand how repeated fire affected soil nutrients, and AMF spore abundance, community composition and percentage of root length colonized (RLC); (2) to unravel the mechanism underlying repeated fire to affect AMF; (3) to compare the growth performance of Guinea grass and Taiwanese Acacia at different fire sequential stages, and to understand the influence of soil nutrients and AMF on Guinea grass growth performance. Results indicated repeated fire significantly altered soil nutrients. Under long-term repeated fire, soil available K, Ca, Mg and pH elevated significantly, but in contrast, exchangeable inorganic N and available P decrease significantly at Guinea grassland. Repeated fire also decreased AMF spore abundance, and altered AMF community composition significantly. Along with repeated fire fire, AMF community has shifted from Glomus dominated composition to Glomus and Acaulsopora coexistence. We suggested that fire adaption ability, erosion, soil pH and N availability were the underlying mechanisms to decrease AMF spore abundance, and the changes in AMF community were related to times of fire and N availability. Pot experiment demonstrated, Guinea grass growth performance at long-term repeated burnt soil, was significantly lower than at short-term repeated burnt soil or unburnt forest soil. Nitrogen fertilization could significantly improve Guinea grass growth performance, but its effect on Guinea grass grown in all sequential soil had no difference. The low RLC and mycorrhiza inhibition experiment (benomyl addition) implied the AMF is less important for Guinea grass growth than soil nutrients. Acacia pot experiment, which indicated Taiwanese Acacia seedlings growth was similar at all fire sequential stage soil, implied Taiwanese Acacia weren’t affected by changes in soil nutrients and AMF. To sum up, long-term repeated fire has dramatically changed soil nutrients, AMF spore abundance, community composition and RLC at Dadu tableland. Furthermore, the depletion in soil N and P may reduce the invasive plant - fire regime positive feedback cycle, and in turn reduce the dominance of Guinea grass. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:18:12Z (GMT). No. of bitstreams: 1 ntu-102-R99625013-1.pdf: 8698344 bytes, checksum: 0d07b6730d65b6b8a0ece908685e5021 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 謝誌 i
摘要 iii ABSTRACT v 目錄 vii 圖目錄 ix 表目錄 xvi 1. 前言 1 2. 材料與方法 4 2.1 樣區概況 4 2.2 野外調查 6 2.2.1 樣區設置 6 2.2.2 採樣方法 6 2.2.3 火燒後地被回復觀察 7 2.2.4 土壤養分分析 8 2.2.5 大黍養分狀態分析 10 2.2.6 叢枝菌根菌的孢子豐度及群落組成分析 12 2.2.7 叢枝菌根感染率 14 2.3 盆缽試驗 16 2.3.1 盆缽土壤的採樣 16 2.3.2 土壤養分分析 16 2.3.3 大黍盆缽試驗 17 2.3.4 相思樹盆缽試驗 18 2.3.5 大黍植體分析 18 2.3.6 叢枝菌根菌的孢子豐度及群落組成分析 19 2.3.7 叢枝菌根感染率 19 2.4 統計分析 20 2.4.1 野外調查的統計分析 20 2.4.2 盆缽試驗的統計分析 21 3. 結果 22 3.1 野外調查結果 22 3.1.1 火燒後地被回復觀察 22 3.1.2 野外調查土壤養分分析 22 3.1.3 大黍養分狀態分析 24 3.1.4 叢枝菌根菌的孢子豐度及群落分析 26 3.1.5 叢枝菌根菌感染率分析 28 3.1.6 土壤養分及大黍養分狀態與叢枝菌根菌的關係 29 3.1.7 以PCA分析不同火燒序列階段養分性質的整體差異 30 3.1.8 以PCA 分析不同火燒序列階段的叢枝菌根菌整體差異 31 3.2 盆缽試驗結果 32 3.2.1 土壤養分分析 32 3.2.2 大黍的生長表現 32 3.2.3 相思樹的生長表現 35 3.2.4 叢枝菌根菌孢子豐度及群落分析 35 3.2.5 叢枝菌根感染率分析 37 4. 討論 38 4.1 重複火燒對土壤養分的影響 38 4.1.1 重複火燒明顯提升土壤pH及有效性鉀、鈣、鎂 38 4.1.2 重複火燒減低氮有效性 39 4.1.3 重複火燒減少磷有效性 40 4.2 重複火燒對叢枝菌根菌的影響 41 4.2.1 重複火燒對孢子豐度及群落組成的影響 42 4.2.2 不同火燒序列階段的根內感染率比較 48 4.3 重複火燒對入侵植物優勢的影響 50 4.3.1 不同火燒序列階段的相思樹生長表現比較 50 4.3.2 不同火燒序列階段的大黍生長表現比較 50 5. 結論 54 6. 參考文獻 55 7. 附錄 105 | |
| dc.language.iso | zh-TW | |
| dc.subject | 林火 | zh_TW |
| dc.subject | 外來植物入侵 | zh_TW |
| dc.subject | 菌根 | zh_TW |
| dc.subject | 有效性養分 | zh_TW |
| dc.subject | 氮磷比 | zh_TW |
| dc.subject | δ15N | zh_TW |
| dc.subject | 正回饋循環 | zh_TW |
| dc.subject | 重複火燒 | zh_TW |
| dc.subject | 叢枝菌根菌 | zh_TW |
| dc.subject | δ15N | en |
| dc.subject | repeated fire | en |
| dc.subject | burning | en |
| dc.subject | alien plant invasion | en |
| dc.subject | positive feedback | en |
| dc.subject | arbuscular mycorrhizal fungi | en |
| dc.subject | mycorrhiza | en |
| dc.subject | available nutrient | en |
| dc.subject | N/P | en |
| dc.title | 重複火燒對土壤養分、叢枝菌根菌及入侵植物生長
表現的影響─以台灣中部大肚山台地為例 | zh_TW |
| dc.title | Changes in Soil Nutrients, Arbuscular Mycorrhizal Fungi and Invasive Plant Growth under Repeated Fire at Dadu Tableland, Central Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴朝明,顏江河 | |
| dc.subject.keyword | 林火,重複火燒,外來植物入侵,正回饋循環,叢枝菌根菌,菌根,有效性養分,氮磷比,δ15N, | zh_TW |
| dc.subject.keyword | repeated fire,burning,alien plant invasion,positive feedback,arbuscular mycorrhizal fungi,mycorrhiza,available nutrient,N/P,δ15N, | en |
| dc.relation.page | 110 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 8.49 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
