請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59029
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖運炫(Yunn-Shiuan Liao) | |
dc.contributor.author | Yih-Chiu Tan | en |
dc.contributor.author | 譚義九 | zh_TW |
dc.date.accessioned | 2021-06-16T08:45:31Z | - |
dc.date.available | 2016-09-02 | |
dc.date.copyright | 2013-09-02 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-20 | |
dc.identifier.citation | [1] J. Zimmer, 'Novel Thin Glass for 3D Shaped Electronics Display Covers,' in SID Symposium Digest of Technical Papers, 2011, pp. 833-836.
[2] D. R. Uhlmann, Elasticity and Strength in Glasses: Glass: Science and Technology vol. 5: Academic Press, 1980. [3] D. Marshall and B. Lawn, 'Strength degradation of thermally tempered glass plates,' Journal of the American Ceramic Society, vol. 61, pp. 21-27, 1978. [4] R. Gy, 'Ion exchange for glass strengthening,' Materials Science and Engineering: B, vol. 149, pp. 159-165, 2008. [5] A. K. Varshneya, 'Chemical strengthening of glass: lessons learned and yet to be learned,' International Journal of Applied Glass Science, vol. 1, pp. 131-142, 2010. [6] A. K. Varshneya, 'The physics of chemical strengthening of glass: Room for a new view,' Journal of Non-Crystalline Solids, vol. 356, pp. 2289-2294, 2010. [7] I. Donald and M. Hill, 'Preparation and mechanical behaviour of some chemically strengthened lithium magnesium alumino-silicate glasses,' Journal of materials science, vol. 23, pp. 2797-2809, 1988. [8] D. Walton, N. Shashidhar, and J. Amin, 'Specialty Glass: A New Design Element In Consumer Electronics,' Electronic Design, vol. 58, pp. 70-73, 2010. [9] A. K. VARSHNEYA and I. M. SPINELLI, 'High-strength, large-case-depth chemically strengthened lithium aluminosilicate glass,' American Ceramic Society bulletin, vol. 88, pp. 27-33, 2009. [10] A. Koike, S. Akiba, T. Sakagami, K. Hayashi, and S. Ito, 'Difference of cracking behavior due to Vickers indentation between physically and chemically tempered glasses,' Journal of Non-Crystalline Solids, vol. 358, pp. 3438-3444, 2012. [11] V. M. Sglavo and D. J. Green, 'Flaw‐Insensitive Ion‐Exchanged Glass: II, Production and Mechanical Performance,' Journal of the American Ceramic Society, vol. 84, pp. 1832-1838, 2001. [12] G. Glaesemann, T. Gross, J. Payne, and J. Price, 'Fractography in the development of ion-exchanged cover glass,' Fractography of advanced ceramics and glasses VI, pp. 85-93, 2012. [13] R. Tandon and S. J. Glass, 'Controlling the fragmentation behavior of stressed glass,' in Fracture Mechanics of Ceramics, ed: Springer, 2005, pp. 77-91. [14] M. B. Abrams, D. J. Green, and S. Jill Glass, 'Fracture behavior of engineered stress profile soda lime silicate glass,' Journal of non-crystalline solids, vol. 321, pp. 10-19, 2003. [15] R. Tandon and D. J. Green, 'The effect of crack growth stability induced by residual compressive stresses on strength variability,' Journal of materials research, vol. 7, pp. 765-771, 1992. [16] P. Jannotti, G. Subhash, P. Ifju, P. K. Kreski, and A. K. Varshneya, 'Influence of ultra-high residual compressive stress on the static and dynamic indentation response of a chemically strengthened glass,' Journal of the European Ceramic Society, vol. 32, pp. 1551-1559, 2012. [17] C. Incorporated, 'Glass basics: Scoring and Separating Recommendation,' Corning Incorporated Technical Information Paper, p. TIP 305. [18] S. S. T Minakawa, J Nishihashi, 'Laser beam glass cutting,' 4,682,003, 1987. [19] K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, 'Three-dimensional thermal stress analysis on laser scribing of glass,' Precision Engineering, vol. 32, pp. 301-308, 2008. [20] 包庭光, 'LCD 玻璃基板之圓弧路徑振動輔助劃線切割研究,' 碩士論文, 機械工程學系, 國立台灣大學, 2011. [21] J. Bousinesq, 'Application des Potentiels a l'Etude de l'Equilibre et du Mouvement des Solides Elastiques,' Gauthier-Villars, vol. pp. 398-402, 1885. [22] H. Hertz and J. R. Angew, 'Hertz's Miscellaneous Papers,' Macmillan Co. Ltd, chs. 5 and 6, 1896. [23] B. R. Lawn, A. G. Evans, and D. B. Marshall, 'Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System,' Journal of the American Ceramic Society, vol. 63, pp. 574-581, 1980. [24] D. B. Marshall, B. R. Lawn, and A. G. Evans, 'Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System,' Journal of the American Ceramic Society, vol. 65, pp. 561-566, 1982. [25] B. R. Lawn and E. R. Fuller, 'Equilibrium penny-like cracks in indentation fracture,' Journal of Materials Science, vol. 10, pp. 2016-2024, 1975. [26] D. B. Marshall, 'Geometrical Effects in Elastic/Plastic Indentation,' Journal of the American Ceramic Society, vol. 67, pp. 57-60, 1984. [27] B. R. Lawn, T. P. Dabbs, and C. J. Fairbanks, 'Kinetics of shear-activated indentation crack initiation in soda-lime glass,' Journal of Materials Science, vol. 18, pp. 2785-2797, 1983. [28] R. F. Cook and D. R. Clarke, 'Fracture stability, R-curves and strength variability,' Acta metallurgica, vol. 36, pp. 555-562, 1988. [29] R. Tandon and D. J. Green, 'Crack Stability and T‐Curves Due to Macroscopic Residual Compressive Stress Profiles,' Journal of the American Ceramic Society, vol. 74, pp. 1981-1986, 1991. [30] R. Tandon and D. Green, 'Crack stabilization under the influence of residual compressive stress,' J. Am. Ceram. Soc, vol. 74, pp. 1981-86, 1991. [31] V. M. Sglavo, L. Larentis, and D. J. Green, 'Flaw‐Insensitive Ion‐Exchanged Glass: I, Theoretical Aspects,' Journal of the American Ceramic Society, vol. 84, pp. 1827-1831, 2001. [32] T. M. Gross, 'Scratch damage in ion-exchanged alkali aluminosilicate glass: crack evolution and the dependence of lateral cracking threshold on contact geometry,' Fractography of advanced ceramics and glasses VI, pp. 113-122, 2012. [33] B. R. Lawn and M. V. Swain, 'Microfracture beneath point indentations in brittle solids,' Journal of Materials Science, vol. 10, pp. 113-122, 1975. [34] 許又升, 'LCD玻璃基板之震動輔助劃線切割技術及原理,' 碩士論文, 機械工程學系, 國立台灣大學, 2008. [35] L. Y. Y. S. C. Wang, C. C. Lin, M. S. Chen and F. Y. Gan, 'Glass-strength Dependence of Cutting Conditions in Thin Laminated TFT-LCD,' IDW '07 the 14th International Display Workshops, vol. 2, pp. 513-516, 2007. [36] S. G. Ishikawa; Hirokazu, 'Scribing apparatus ' 6,536,121 2000. [37] I. Hirokazu, 'Scribing device,' 2001. [38] I. Hirokazu, 'Scribing device ' 6,832,439 2002. [39] I. H. Shimotoyodome; Gyo, Shirai; Takeki, 'Scribing method,' 6,478,206, 2000. [40] 楊光美, 'LCD面板切割刀輪之刀尖形狀作用機制與創新輔助切割方法,' 博士論文, 機械工程學系, 國立台灣大學, 2010. [41] T. Ono and K. Tanaka, 'Theoretical and quantitative evaluation of the cuttability of AMLCD glass substrates using a four-point-bending test,' Journal of the Society for Information Display, vol. 7, pp. 207-212, 1999. [42] T. O. a. K. Tanaka, 'Effect of Scribing Wheel Dimensions on the Cutting of LCD Glass Substrates,' SID Symposium Digest of Technical Papers, 31, vol. pp. 156-163, 2000. [43] Y. S. Liao, G. M. Yang, and Y. S. Hsu, 'Effect of geometrical characteristics of a scribing wheel on the bending strength of LCD glass substrates,' Journal of the Society for Information Display, vol. 17, pp. 287-291, 2009. [44] Y. S. Liao, G. M. Yang, and Y. S. Hsu, 'Vibration assisted scribing process on LCD glass substrate,' International Journal of Machine Tools and Manufacture, vol. 50, pp. 532-537, 2010. [45] B. Lawn and R. Wilshaw, 'Indentation fracture: principles and applications,' Journal of Materials Science, vol. 10, pp. 1049-1081, 1975. [46] G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, 'A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements,' Journal of the American Ceramic Society, vol. 64, pp. 533-538, 1981. [47] T. Ono and Y. Ishida, 'Cuttability of AMLCD Glass Substrates,' SID Symposium Digest of Technical Papers, vol. 33, pp. 45-47, 2002. [48] S. Yoshida, H. Sawasato, T. Sugawara, Y. Miura, and J. Matsuoka, 'Effects of indenter geometry on indentation-induced densification of soda-lime glass,' Journal of Materials Research, vol. 25, pp. 2203-2211, 2010. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59029 | - |
dc.description.abstract | 化學強化玻璃在玻璃表面有一層離子交換產生的壓應力層,使得玻璃強化後具有較高的強度和抗刮、抗腐蝕等特性,但也造成化學強化玻璃在劃線上的難度較素玻璃提高了不少,特別是強化深度23 μm以上的強化玻璃更都沒有一個好的劃線方法。本研究提出了一強化玻璃劃線理論,探討了三種不同強化深度(10 μm、 23 μm、40 μm)的化學強化玻璃劃線性質。並針對三種不同強化程度的玻璃提出劃線策略。在強化深度10 μm的強化玻璃劃線上,利用一般標準型刀輪,就可成功劃線,並且劃線後維持良好的玻璃表面及截面狀況。而強化深度23 μm的玻璃,一般劃線已無法有效地將玻璃劃開,加入振動輔助劃線,以方波搭配低頻率和低振幅的情況下能將玻璃成功劃開並且劃線後依舊能有良好的玻璃表面及截面狀況。在強化深度40 μm的強化玻璃劃線研究中,劃線後玻璃十分容易產生側向裂紋,造成玻璃表面會產生大量的表面微崩落,但利用角度很小115 ˚的刀輪在高刀輪負荷下,利用表面微崩落造成強化層的剝落,可成功將強化深度40 μm的強化玻璃劃開。而搭配振動輔助後,以方波搭配低振幅在頻率400 Hz時能成功將表面微崩落的情形改善。 | zh_TW |
dc.description.abstract | Ion-exchange processing produce a compressive stress profile in glass surface and this kind of glass is called chemically strengthened glass or ion-exchanged glass. Residual compressive stress increase the glass strength, crack and scratch resistance, but also cause chemically strengthened glass is more difficult to scribe, especially the glass with depth of layer more than 23 μm. In this study, scribing three different kinds of chemically strengthened glass (depth of layer 10 μm, 23 μm, 40 μm) are discussed. For chemically strengthened glass with depth of layer 10 μm, glass can be successfully separated with standard scribing wheel and still maintain good surface and cross-section condition after scribing. On scribing depth of layer 23 μm glass, traditional scribing is unable to effectively separate the glass. By adding vibration assisted, glass can be successfully separated and with good surface and cross-section condition in the case of square wave form, low frequency and low amplitude. Scribing chemically strengthened glass with depth of layer 40 μm, lateral crack will generate very easily, causing seriously chipping. Scribing with wheel angle 115˚ and high loading can successfully induce the glass separated because heavily chipping cause compressive layer in the glass surface dropping off. Vibration assisted scribing can successfully improve surface chipping on the condition of square wave form, low amplitude, and frequency of 400 Hz. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:45:31Z (GMT). No. of bitstreams: 1 ntu-102-R00522727-1.pdf: 5074305 bytes, checksum: fe4bf53e3b82148f5eaba92eff674f2a (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書
誌謝 ii 摘要 iii ABSTRACT iv CONTENTS v 圖目錄 vii 表目錄 xi Chapter 1 緒論 1 1.1 研究背景 1 1.2 文獻回顧 5 1.2.1 脆性材料破壞研究 5 1.2.2 強化玻璃性質 7 1.2.3 玻璃劃線相關研究 12 1.3 本文目的 18 1.4 本文架構 19 Chapter 2 相關理論 20 2.1 脆性材料壓痕應力場 20 2.2 脆性材料壓痕破壞理論 21 2.3 劃線切割理論 27 2.4 刀輪幾何外型與壓入體積 29 2.5 強化玻璃劃線原理 31 2.6 振動輔助劃線切割之原理 35 Chapter 3 實驗設備與實驗方法 37 3.1 實驗設備 37 3.1.1 振動輔助裝置設計 37 3.1.2 實驗機台 38 3.1.3 其他實驗設備與材料 41 3.1.4 量測設備 45 3.2 實驗設置 47 3.2.1 壓痕測試 48 3.2.2 刀輪劃線 48 3.2.3 劃線狀況量測 49 3.3 實驗規劃 55 3.3.1 刀輪壓痕測試 55 3.3.2 化學強化玻璃劃線 56 Chapter 4 實驗結果與討論 59 4.1 刀輪壓痕測試實驗結果與討論 59 4.1.1 不同負荷對於壓痕影響 59 4.2 普通化學強化玻璃劃線實驗結果與討論 67 4.2.1 強化深度10 μm強化玻璃畫線研究 67 4.2.2 強化深度23 μm強化玻璃畫線研究 70 4.2.3 強化深度40 μm強化玻璃畫線研究 79 Chapter 5 結論與未來展望 89 5.1 實驗結論 89 5.2 未來展望 90 | |
dc.language.iso | zh-TW | |
dc.title | 化學強化玻璃劃線切割研究 | zh_TW |
dc.title | Study of Scribing Chemically Strengthened Glass | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡曜陽(Yao-Yang Tsai),李貫銘(Kuan-Ming Li) | |
dc.subject.keyword | 化學強化玻璃,刀輪劃線,振動輔助,強化玻璃裂片,強化深度, | zh_TW |
dc.subject.keyword | chemically strengthened glass,glass scribing,vibration assisted,depth of layer, | en |
dc.relation.page | 94 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 4.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。