請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59028
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蕭仁傑(Jen-Chieh Shiao) | |
dc.contributor.author | En-Yu Liu | en |
dc.contributor.author | 劉恩諭 | zh_TW |
dc.date.accessioned | 2021-06-16T08:45:28Z | - |
dc.date.available | 2014-08-25 | |
dc.date.copyright | 2013-08-25 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-20 | |
dc.identifier.citation | Aguirre-Villasenor H, Castillo-Velazquez R (2011) New depth record of Cherublemma emmelas, black brotula (Ophidiiformes: Ophidiidae) from the Gulf of California, Mexico. Revista Mexicana de Biodiversidad 82(2).
Ahlstrom EH, Moser HG (1980) Characters useful in identification of pelagic marine fish eggs. Calif Coop Oceanic Fish Invest Rep 21:121-131. Allain V, Biseau A, Kergoat B (2003) Preliminary estimates of French deepwater fishery discards in the Northeast Atlantic Ocean. Fish Res 60(1):185-192. Ambrose DA (1996) Alepocephalidae: slickheads. p. 224-233. In H.G. Moser (ed.) The early stages of fishes in the California Current region. CalCOFI Atlas No. 33. 1505p. Arneri E, Morales‐Nin B (2000) Aspects of the early life history of European hake from the central Adriatic. J Fish Biol 56(6):1368-1380. Badcock J, Larcombe RA (1980) The sequence of photophore development in Xenodermichthys copei (Pisces: Alepocephalidae). J Mar Biol Ass UK 60(02): 277-294. Balon EK (1975) Reproductive guilds of fishes: a proposal and definition. J Fish Board Cana 32(6):821-864. Belcari P, Ligas A, Viva C (2006) Age determination and growth of juveniles of the European hake, Merluccius merluccius (L. 1758), in the northern Tyrrhenian Sea (NW Mediterranean). Fish Res 78(2):211-217. Billet D, Lam R, Rice IR, Mantoura R (1983) Seasonal sedimentation of phytoplankton to the deep-sea benthos. Nature 302: 520-522. Brandt SB (1993). The effect of thermal fronts on fish growth: a bioenergetics evaluation of food and temperature. Estuaries, 16(1):142-159. Brooks CM, Andrews AH, Ashford JR, Ramanna N, Jones CD, Lundstrom CC, Cailliet GM (2011) Age estimation and lead–radium dating of Antarctic toothfish (Dissostichus mawsoni) in the Ross Sea. Polar Biology 34:329-338. Brown A, Busby M, Mier K (2001) Walleye pollock Theragra chalcogramma during transformation from the larval to juvenile stage: otolith and osteological development. Mar Biol 139(5):845-851. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771-1789. Brownell CL (1979) Stages in the early development of 40 marine fish species with pelagic eggs from the Cape of Good Hope (p.84). JLB Smith Institute of Ichthyology, Rhodes University. Bystydzieńska ZE, Phillips AJ, Linkowski TB (2010). Larval stage duration, age and growth of blue lanternfish Tarletonbeania crenularis (Jordan and Gilbert, 1880) derived from otolith microstructure. Environ Bio Fish 89(3-4):493-503. Caillieta GM, Andrewsa AH, Burtona EJ, Wattersb DL, Klinec DE, Ferry-Grahamd LA (2001) Age determination and validation studies of marine fishes: do deep-dwellers live longer? Exp Gerontol 36(4–6):739-764. Campana SE (1984) Microstructural growth patterns in the otoliths of larval and juvenile starry flounder, Platichthys stellatus. Can J Zool 62(8):1507-1512. Carney RS, Haedrich RL, Rowe GT (1983) Zonation of fauna in the deep sea. In: Rowe GT (ed.) Deep-sea biology. John Wiley, New York, p. 371-398. Caruso JH (2002) Lophiidae. Anglerfishes (goosefishes, monkfishes). p. 1043-1049. In Carpenter KE (ed.) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Atlantic. Vol. 2: Bony fishes part 1 (Acipenseridae to Grammatidae). Casas JM, Pineiro C (2000) Growth and age estimation of greater fork-beard (Phycis blennoides Brunnich, 1768) in the north and northwest of the Iberian Peninsula (ICES Division VIIIc and IXa). Fish Res 47(1):19-25. Chapelle G, Peck LS (1999) Polar gigantism dictated by oxygen availability. Nature 399(6732):114-115. Childress JJ (1995) Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol Evol 10(1):30-36. Collins MA, Bailey DM, Ruxton GD, Priede IG (2005) Trends in body size across an environmental gradient: a differential response in scavenging and non-scavenging demersal deep-sea fish. Proc R Soc B 272(1576):2051-2057. Crabtree RE, Sulak KJ (1986) A contribution to the life history and distribution of Atlantic species of the deep-sea fish genus Concora (Alepocephalidae). Deep-Sea Res 33(9):1183-1201. Dahlgren U (1927) The Life History of the Fish Astroscopus (The “Stargazer”) Sci Mon 24:348-365. Davenport SR, Bax NJ (2002) A trophic study of a marine ecosystem off southeastern Australia using stable isotopes of carbon and nitrogen. Can J Fish Aqua Sci 59(3):514-530. DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta, 42:495-506. Dougherty AB (2008). Daily and sub-daily otolith increments of larval and juvenile walleye pollock, Theragra chalcogramma (Pallas), as validated by alizarin complexone experiments. Fish Res 90(1):271-278. Eschmeyer WN, Collette BB (1966). The scorpionfish subfamily Setarchinae, including the genus Ectreposebastes. Bull Mar Sci 16(2):349-37. Fahay MP (1992) Development and distribution of cusk eel eggs and larvae in the Middle Atlantic Bight with a description of Ophidion robinsi n. sp.(Teleostei: Ophidiidae) Copeia 3:799-819 Fahay MP, Hare JA (2006) Ch. 49 Order Ophidiiformes: Aphyonidae, Bythitidae, Ophidiidae, p. 661-, In Richards WJ (ed). Early Stages of Atlantic Fishes: An Identification Guide For The Western Central North Atlantic. CRC Press, Taylor and Francis Group, Boca Raton, FL, 2640 pp. Fahay MP, Nielsen JG (2003). Ontogenetic evidence supporting a relationship between Brotulotaenia and Lamprogrammus (Ophidiiformes: Ophidiidae) based on the morphology of exterilium and rubaniform larvae. Ichthyol Res 50(3):209-220. Fortier L, Harris RP (1989) Optimal foraging and density-dependent competition in marine fish larvae. Mar Ecol Prog Ser 51:19-33. Friedman I, O'Neil JR (1977) Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M, Chap KK (eds) Data of geochemistry, 6th edn. US Geol Surv Prof Rap 440:1-12. Fry B (1988) Food web structure on Georges Bank from stable C, N, and S isotopic compositions. Limnol Oceanogr 33:1182-1190 Fujita T, Inada T, Ishito Y (1995). Depth-gradient structure of the demersal fish community on the continental shelf and upper slope off Sendai Bay, Japan. Mar Ecol Prog Ser118(1):13-23. Gao Y, Dettman DL, Piner KR, Wallace FR (2010) Isotopic Correlation (δ18O versus δ13C) of Otoliths in Identification of Groundfish Stocks. Trans Am Fish Soc 139(2):491-501. Geffen AJ, Van der Veer HW, Nash RDM (2007) The cost of metamorphosis in flatfishes. J Sea Res 58(1):35-45. Geffen AJ (2012). Otolith oxygen and carbon stable isotopes in wild and laboratory-reared plaice (Pleuronectes platessa). Environ Biol Fish 95(4):419-430. Geoghegan P, Strube JN, Sher RA (1998). The First Occurrence of the Striped Cusk Eel, Ophidion marginatum (Dekay) in the Gulf of Maine. Northeastern Naturalist 363-366. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293(5538):2248-2251. Godiksen J, Svenning MA, Dempson J, Marttila M, Storm-Suke A, Power M (2010) Development of a species-specific fractionation equation for Arctic charr (Salvelinus alpinus (L.)): an experimental approach. Hydrobiology 650:67-77 Gordon JDM, Duncan JAR (1985): The ecology of the deep-sea benthic and benthopelagic fish on the slopes of the Rockall Trough, northeastern Atlantic. Prog Oceanogr 15:37-69. Gordon JDM, Shotton R(ed.) (2003) Environmental and biological aspects of deepwater demersal fisheries. FAO Fisheries proceedings (FAO). 1813-3940, no. 3/1 Gronkjar P, Schytte M(1999) Non-random mortality of Baltic cod larvae inferred from otolith hatch-check sizes. Mar Ecol Prog Ser 181:53-59. Grossman EL, Ku TL (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol 59:59-74. Hartel KE, Craddock JE. Order MYCTOPHIFORMES NEOSCOPELIDAE Hirakawa N, Suzuki N, Narimatsu Y, Saruwatari T, Ohno A (2007) The spawning and settlement season of Chlorophthalmus albatrossis along the Pacific coast of Japan. Raffles B Zool 14:167-170. Hislop JR, Gallego A, Heath MR, Kennedy FM, Reeves SA, Wright PJ (2001) A synthesis of the early life history of the anglerfish, Lophius piscatorius (Linnaeus, 1758) in northern British waters. J Mar Sci 58(1):70-86. Hoie H, Folkvord A, Otterlei E (2003) Effect of somatic and otolith growth rate on stable isotopic composition of early juvenile cod (Gadus morhua L) otoliths. J Exp Mar Biol Ecol 289(1):41-58. Hoie H, Otterlei E, Folkvord A (2004) Temperature dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). J Mar Sci 61:243-251. Hsieh HY, Lo WT, Liu DC, Su WC (2010). Influence of hydrographic features on larval fish distribution during the south‐westerly monsoon in the waters of Taiwan, western North Pacific Ocean. J Fish Biol 76(10):2521-2539. Iglesias M, Brothers EB, Morales-Nin B (1997) Validation of daily increment deposition in otoliths. Age and growth determination of Aphia minuta (Pisces: Gobiidae) from the northwest Mediterranean. Mar Biol 129(2):279-287. Irisson JO, Paris CB, Guigand C, Planesa S (2010). Vertical distribution and ontogenetic' migration' in coral reef fish larvae. Limnol Oceanogr 55(2):909. Jackson TL (2006) Ch. 164 Uranoscopelidae: Stargazer, p. 1919-, In Richards WJ (ed). Early Stages Of Atlantic Fishes: An Identification Guide For The Western Central North Atlantic. CRC Press, Taylor and Francis Group, Boca Raton, FL, 2640 pp. Jearld A, Sass SL, Davis MF (1993) Early growth, behavior, and otolith development of the winter flounder Pleuronectes americanus. Fish Bull 91(1):65-75. Jenkins GP (1987) Comparative diets, prey selection, and predatory impact of co-occurring larvae of 2 flounder species. J Exp Mar Biol Ecol 110(1987):147-170 Job SD, Bellwood DR (2000) Light sensitivity in larval fishes: Implications for vertical zonation in the pelagic zone. Limnol Oceanogr 45:362-371 Kalish JM (1991a) 13C and 18O isotopic disequilibria in fish otoliths: Metabolic and kinetic effects. Mar Ecol Prog Ser, 75: 191-203. Kalish JM (1991b) Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta). Mar Biol 110:37-47. Keefe M, Able KW (1993) Patterns of metamorphosis in summer flounder, Paralichthys dentatus. J Fish Biol 42(5):713-728. Kim ST, O'Neil JR (1997). Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61(16):3461-3475. Koslow JA (1996) Energetic and life-history patterns of deep-sea benthic, benthopelagic and seamount-associated fish. J Fish Biol 49:54-74. Kroopnick PM (1985). The distribution of 13C of ΣCO2 in the world oceans. Deep-Sea Res Oceanogr A 32(1):57-84. Kryzhanovsky SG (1949) Eco-morphological principles and patterns of development among minnow, loach and catfish. Part II: Ecological groups of fishes and patterns of their distribution. Fish Res Board Can Transl Ser 2945. Kuroki M, Fukuda N, Yamada Y, Okamura A, Tsukamoto K (2010) Morphological changes and otolith growth during metamorphosis of Japanese eel leptocephali in captivity. Coast Mar Sci 34(1): 31-38. Laidig TE, Pearson DE, Sinclair LL (2003) Age and growth of blue rockfish (Sebastes mystinus) from central and northern California. Fish Bull 101:800-808. Lampert W (1989) The adaptive significance of diel vertical migration of zooplankton. Funct Ecol 3:21-27. Landaeta MF, Balbontin F, Herrera GA (2008) Larval development of the Patagonian brotula Cataetyx messieri(Pisces, Bythitidae) from fjords of southern Chile. J Fish Biol 73:302-310. Laurenson CH, Priede IG, Bullough LW, Napier IR (2001) Where are the mature anglerfish? The population biology of Lophius piscatorius in northern European waters. ICES Annual Science Conference C.M.2001/J:27 Lin HY, Shiao JC, Chen YG, Iizuka Y (2012). Ontogenetic vertical migration of grenadiers revealed by otolith microstructures and stable isotopic composition. Deep-Sea Res Oceanogr A 61: 123-130. Longmore C, Trueman CN, Neat F, O'Gorman EJ, Milton JA, Mariani S (2011). Otolith geochemistry indicates life-long spatial population structuring in a deep-sea fish, Coryphaenoides rupestris. Mar Ecol Prog Ser 435:209-224. Lowenstein O (1971). The labryinth. In: Hoar WS. and Randall DJ (Eds) Fish Physiology Volume V, Sensory systems and electric organs. 207-240, Academic Press, New York. Lukeneder A, Harzhauser M, Mullegger S, Piller WE (2008). Stable isotopes (δ18O and δ13C) in Spirula spirula shells from three major oceans indicate developmental changes paralleling depth distributions. Mar Biol 154(1):175-182. Markle DF, Krefft G (1985) A new species and review of Bajacalifornia (Pisces: Alepocephalidae) with comments on the hook jaw of Narcetes stomias. Copeia 1985:345–356. Markle DF, Wenner CA (1979) Evidence of demersal spawning in the mesopelagic zoarcid fish Melanostigma atlanticum with comments on demersal spawning in the alepocephalid fish Xenodermichthys copei. Copeia 1979(2):363-366. Marshall NB (1953) Egg Size in Arctic, Antarctic and Deep-Sea Fishes. Evolution 7(4):328-341 Marshall NB (1971) Explorations in the life of fishes. Cambridge, MA: Harvard University Press. Marshall NB (1973) Family Macrouridae, in fishes of the western north Atlantic. Mem Sears Found Mar Res Mem 1: 496-537. Massuti E, Morales-Nin B, Stefanescu C (1995). Distribution and biology of five grenadier fish (Pisces: Macrouridae) from the upper and middle slope of the northwestern Mediterranean. Deep Sea Res Oceano Res B 42(3):307-330. McConnaughey T, McRoy CP (1979) Food-web structure in the fractionation of carbon isotopes in the Bering Sea. Mar Biol 53:257-262. McConnaughey TA, Burdett J, Whelan JF, Paull CK (1997). Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochim Cosmochim Acta 61(3):611-622. Mead GW, Bertelsen E, Cohen DM. (1964) Reproduction among deep-sea fishes. Deep-Sea Res 11:569-596. Merrett NR (1980) Bathyotyphlops sewelli (Pisces: Chlorophthalmidae) a senior synonym of B. azorensis, from the eastern North Atlantic with notes on its biology. Zool J Lin Soc 68:99-109. Merrett NR, Haedrich (1997) Deep-sea demersal fish and fisheries. Chapman & Hall, London, UK. Miya M (1990) Leptoderma lubricum. In: Amaoka K, Matsuura K, Inada T, Takeda M, Hatanaka H, Okada K (eds) Fishes collected by the R/V Shinkai Maru around New Zealand. Japan Mar Fish Resour Res Center, Tokyo, pp 136–137. Moku M, Hayashi A, Mori K, Watanabe Y (2005) Validation of daily otolith increment formation in the larval myctophid fish Diaphus slender‐type spp. J Fish Biol 67(5):1481-1485. Morales‐Nin B, Massuti E, Stefanescu C (1996) Distribution and biology of Alepocephalus rostvatus from the Mediterranean Sea. J Fish Biol 48(6):1097-1112. Morales-Nin BYO (1987). The influence of environmental factors on microstructure of otoliths of three demersal fish species caught off Namibia. S Afr J Mar Sci 5(1):255-262. Morales-Nin B, Sena-Carvalho D (1996) Age and growth of the black scabbard fish (Aphanopus carbo) off Madeira. Fish Res 25(3):239-251. Morales-Nin B, Aldebert Y (1997) Growth of juvenile Merluccius merluccius in the Gulf of Lions (NW Mediterranean) based on otolith microstructure and length-frequency analysis. Fish Res 30(1):77-85. Morioka S, Machinandiarena L, Villarino MF (2001) Preliminary information on internal structures of otoliths and growth of ling, Genypterus blacodes (Ophidiidae), larvae and juveniles collected off Argentine. Bull Jpn Soc Fish Oceanogr 65(2):59-66. Moser HG, Watson W (2006) Ch. 39 Neoscopelidae: Blackchin, p. 463-, In Richards WJ (ed). Early Stages Of Atlantic Fishes: An Identification Guide For The Western Central North Atlantic. CRC Press, Taylor and Francis Group, Boca Raton, FL, 2640 pp Mulcahy SA, Killingley JS, Phleger CF, Berger WH (1979) Isotopic composition of otoliths from a benthopelagic fish, coryphaenoides acrolepis, macrouridae, gadiformes. Oceanologica acta 2(4):423-427. Nakabo T (2002) Alepocephalidae. In: Nakabo T (ed) Fishes of Japan with pictorial keys to the species (English edn). Tokai University Press, Tokyo, pp 290–294. Nakamura I, Fujii E, Arai T (1983) The gempylid, Nesiarchus nasutus from Japan and the Sulu Sea. Jpn J of Ichthyol: 29(4). Nakamura I, Parin NV (1993). FAO species catalogue. Volume 15 Snake Mackerels and Cutlassfishes of the World (families Gempylidae and Trichiuridae): An Annotated and Illustrated Catalogue of the Snake Mackerels, Snoeks, Escolars, Gemfishes, Sackfishes, Domine, Oilfish, Cutlassfishes, Scabbardfishes, Hairtails, and Frostfishes Known to Date. FAO Fish. Synop. No. 125, 136 pp. Narimatsu Y, Hattori T, Ueda Y, Matsuzaka H, Shiogaki M (2007) Somatic growth and otolith microstructure of larval and juvenile Pacific cod Gadus macrocephalus. Fisheries Science, 73: 1257-1264. Nash RDM, Geffen AJ (2005) Age and growth. Ecology of juvenile and adult stages of flatfish: distribution and dynamics of habitat association. Biology and Exploitation, Blackwell Science, London (2005), pp. 138-163 Nielsen JG (1966) Synopsis of the lpnopidae (Pisces, Iniomi) with description of two new abyssal species. Galathea Report 8:49-75. Nielsen JG (1969) Systematics and biology of the Aphyonidae (Pisces, Ophidioidea). Danish Science Press. Nielsen JG, Eagle RJ (1974) Descriptions of a new species of Barathronus (Pisces, Aphyonidae) and four specimens of Sciadonus sp. from the Eastern Pacific. J Fish Res Board Can 31(6):1067-1072. Nelson JS (2006) Fishes of the world, 4th edn. Hoboken NJ: Wiley & Sons. Neuman MJ, Witting DA, Able KW (2001), Relationships between otolith microstructure, otolith growth, somatic growth and ontogenetic transitions in two cohorts of windowpane. J Fish Biol 58:967-984 Nielsen JG, Cohen DM, Markle DF, Robins CR (1999) FAO species catalogue. Volume 18. Ophidiiform fishes of the world (Order Ophidiiformes). An annotated and illustrated catalogue of pearlfishes, cusk-eels, brotulas and other ophidiiform fishes known to date. FAO Fish. Synop. No. 125, 178 pp. Nishikawa Y (1987) Juveniles of the gempylids, Rexea prometheoides and Nealotus tripes off northwestern Kyushu Island, Japan. Bulletin-Far Seas Fisheries Research Laboratory. Bull Far Seas Fish Res 23:155-158. Ofstad LH (2013) Anglerfish Lophius piscatorius L. in Faroese waters. Life history, ecological importance and stock status. University of Tromso Press. Okiyama M, Kato H. (1997) A pelagic juvenile of Barathronus pacificus (Ophidiiformes: Aphyonidae) from the Southwest Pacific, with notes on its metamorphosis. Ichthyol Res 44(2):222-226. Palomera I, Olivar MP, Morales-Nin B (2005) Larval development and growth of the European hake Merluccius merluccius in the northwestern Mediterranean. Sci Mar 69(2):251-258. Pannella G (1974) Otolith growth patterns: an aid in age determination in temperate and tropical fishes. In International Symposium on the Ageing of Fish. Reading (UK). Parin NV, Bekker VE (1972) Materials on taxonomy and distribution of some trichiurid fishes (Pisces, Trichiuroidae: Scombrolabracidae, Gempylidae, Trichiuridae). Trudy Inst. Okean. SSSR Akad. Nauk 93:110-204. Parmentier E, Vandewalle P, Lagardere F (2001) Morpho‐anatomy of the otic region in carapid fishes: eco‐morphological study of their otoliths. J Fish Biol 58(4):1046-1061. Pauly D (1997) Geometrical constraints on body size. Trends Ecol Evol 12(11):442. Pearcy WG, Steln DL, Carney RS (1982). The deep-sea benthic fish fauna of the northeastern Pacific Ocean on Cascadian and Tufts Abyssal Plains and adjoining continental slopes. Biol Oceanogr 1:375-428 Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293-320. Pfeiler E, Almada E and Vrijenhoek RC (1990) Ontogenetic changes in proteins and isozyme expression in larval and juvenile bonefish (Albula). J. Exp. Zool., 254: 248-255 Poss SG (1999) Scorpaenidae. In FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific, Vol. 4, Part 2 (Carpenter KE & Niem VH, eds), pp. 2291-2352. Rome: FAO. Priede IG, Bagley PM, Smith KL (1994) Seasonal change in activity of abyssal demersal scavenging grenadiers Coryphaenoides (Nematonurus) armatus in the eastern North Pacific Ocean. Limnol Oceanogra 39(2):279-285. Roberts CD (1991) Fishes of the Chatham Islands, New Zealand: A trawl survey and summary of the ichthyofauna. N Z J Mar Freshw Res 25(1):1-19. Rollefsen G (1933) The otoliths of the cod. Fisk dir Skr Havunder 4(3):1-18. Rooker JR, Secor DH, Zdanowicz VS, De Metrio G, Relini LO (2003), Identification of Atlantic bluefin tuna (Thunnus thynnus) stocks from putative nurseries using otolith chemistry. Fish Oceanogr 12:75-84. Rowling KR, Makin DL (2001) Monitoring of the fishery for Gemfish Rexea solandri, 1996 to 2000. Final report to the Australian Fisheries Management Authority. NSW Fisheries Final Report Series No. 27. Sassa C, Kawaguchi K (2006) Occurrence patterns of mesopelagic fish larvae in Sagami Bay, central Japan. J Oceanogr 62(2):143-153. Satoshi M (1962) Pelagic fish eggs from Japanese waters IV: Trachinina and Uranoscopina. Science bulletin of the Faculty of Agriculture, Kyushu University 19(3):369-376 Shephard S, Trueman C, Rickaby R, Rogan E (2007) Juvenile life history of NE Atlantic orange roughy from otolith stable isotopes. Deep-Sea Res Oceanogr A 54(8):1221-1230. Sherwood GD, Rose GA (2007) Influence of swimming form on otolith δ13C in marine fish. Mar Ecol Prog Ser 258:283-289. Sheu DD, Lee WY, Wang CH, Wei CL, Chen CTA, Cherng C, Huang MH (1996). Depth distribution of δ13C of dissolved ΣCO2 in seawater off eastern Taiwan: effects of the Kuroshio current and its associated upwelling phenomenon. Cont Shelf Res 16(12):1609-1619. Shiao JC, Wang SE, Yokawa K, Ichinokawa M, Takeuchi Y, Chen YG, Shen CC (2010) Natal origin of pacific Bluefin tuna Thunnus orientalis inferred from otolith oxygen isotope composition. Mar Ecol Prog Ser 420:207-219. Sogard S M, Olla B L (1996) Food deprivation affects vertical distribution and activity of a marine fish in a thermal gradient: potential energy-conserving mechanisms. Mar Ecol Prog Ser 133:43-55 Sogard, S. M., & Olla, B. L. (1996) Food deprivation affects vertical distribution and activity of a marine fish in a thermal gradient: potential energy-conserving mechanisms. Mar Ecol Prog Ser 133:43-55 Solomon CT, Weber PK, Cech JJ, Jr., Ingram BL, Conrad ME, Machavaram MV, Pogodina AR, and Franklin RL (2006) Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Can J Fish Aquat Sci 63: 79-89 Sponaugle S (2009) Daily otolith increments in the early stages of tropical fish. In Tropical Fish Otoliths: Information for Assessment, Management and Ecology (pp. 93-132). Springer Netherlands. Steele JH, Thorpe SA, Turekian KK (Eds.) (2010) Marine Ecological Processes: A derivative of the Encyclopedia of Ocean Sciences. Academic Press. Stefanescu C, Rucabado J, Lloris D (1992) Depth-size trends in western Mediterranean demersal deep-sea fishes. Mar Ecol Prog Ser 81:205-213 Stein DL and Pearcy WG (1982) Aspects of reproduction, early life history, and biology of macrourid fishes off Oregon, USA. Deep-Sea Res Oceanogr A 29:1313-1329. Suntsov AV (2007) Brotulotaenia (Teleostei: Ophidiiformes) larval development revisited: an apparently new type of mimetic resemblance in the epipelagic ocean. Raffles Bull Zool 14:177-186 Takami M, Fukui A (2010) Larvae and juveniles of Leptoderma lubricum and L. retropinnum (Argentiformes: Alepocephalidae) collected from Suruga Bay, Japan. Ichthyol Res57(4):406-415 Thiel H (1975) The size structure of the deep-sea benthos. Int Rev Gesamt Hydrobiol 60:576-606. Thorrold SR, Campana SE, Jones CM, Swart PK (1997) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochim Cosmochim Acta 61:2909-2919. Thresher RE, Proctor CH, Gunn JS, Harrowfield IR (1994) An evaluation of electron probe microanalysis of otoliths for stock delineation and identification of nursery areas in a southern temperate groundfish, Nemadactylus macropterus (Cheilodactylidae). Fish Bull 92: 817-840. Tieszen LL, Boutton TW, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet Oecologia 57:32-37. Tzeng WN, Wang YT, Chern YT (1997) Species composition and distribution of fish larvae in Yenliao Bay, northeastern Taiwan. Zool Stud. Taipei 36:146-158. Ustundağ C (2003) Seed production of turbot (Psetta maxima) Ceriyunus Res Bull 3 (4):6-11. Wang SB, J Ou JC, Chang JJ, Liu KM(2007) Characteristics of the Trash Fish Generated by Bottom Trawling in Surrounding Waters of Guei-Shan Island, Northeastern Taiwan. J Fish Soc Taiwan 34(4):379-395 Ware DM (1975) Relation Between Egg Size, Growth, and Natural Mortality of Larval Fish. J Fish Res Board Can 32(12): 2503-2512 Wenner CA (1984). Notes on the ophidioid fish Dicrolene intronigra from the middle Atlantic continental slope of the United States. Copeia 2: 538-541. Wilson DT, McCormick MI (1999) Microstructure of settlement-marks in the otoliths of tropical reef fishes. Mar Biol 134(1):29-41 Wurster CM, Patterson WP (2003) Metabolic rate of late Holocene freshwater fish: evidence from δ13C values of otoliths. Paleobiology 29(4):492-505 Xie S, Watanabe Y, Saruwatari T, Masuda R, Yamashita Y, Sassa C, Konishi Y (2005) Growth and morphological development of sagittal otoliths of larval and early juvenile Trachurus japonicus. J Fish Biol 66(6):1704-1719. Yeh HM, Lee MY, Shao KT (2006) Ten Taiwanese new records of alepocephalid fi shes (Pisces: Alepocephalidae) collected from Taiwan. J Fish Soc Taiwan 33(3): 265-279. Yoneda M, Tokimura M, Fujita H, Takeshita N, Takeshita K, Matsuyama M, Matsuura S (1998), Reproductive cycle and sexual maturity of the anglerfish Lophiomus setigerus in the East China Sea with a note on specialized spermatogenesis. J Fish Biol, 53: 164-178 林先詠 (2011) 以耳石微細結構與穩定性同位素組成探討深海底棲魚類之生活史。國立臺灣大學海洋研究所。104頁。 林清芬 (2000) 南海及呂宋海峽之海水氧同位素組成之研究。國立中山大學海洋地質及化學研究所,80頁。 陳君睿 (2009) 以耳石微細構造及微化學研究台灣東北海域黑頭魚之生活史。國立臺灣海洋大學海洋生物研究所,98頁。 楊承哲 (2010) 台灣東北部海域囊頭鮋年齡與成長之研究。國立台灣海洋大學環境生物與漁業科學學系,64頁。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59028 | - |
dc.description.abstract | 早期生活史為深海底棲魚類重要的發育階段,透過族群分布的研究發現多數物種會進行發育垂直遷徙(ontogenetic vertical migration),藉由改變棲息深度以利發育及生存。魚類耳石由碳酸鈣沉積形成,其微細結構可以用來判斷魚類的年齡與生活史階段,而耳石的穩定性氧與碳同位素資訊(δ18O, δ13C)則記錄個體經歷的環境與生理資訊。本研究所使用的材料包含由研究船採集自台灣東北部及西南部、南海北部及東部海域的魚類樣本(深度> 500 m),以及大溪漁港採集的樣本(深度< 500 m),分析了共8科17種深海底棲魚類的耳石微細結構與穩定性同位素組成,以個體角度探討各物種發育垂直遷徙之生活史。
研究結果顯示耳石δ13C與δ18O分別反映代謝與環境溫度的變化,並且能夠證實個體具有發育垂直遷徙的行為,並推算早期生活史之深度。早期生活史是否採取發育垂直遷徙與生殖策略有關:例如唯有產沉性大卵的黑頭魚科(Alepocephalidae)早期生活史因孵化體型大,而沒有發育垂直遷徙。在底棲時期多數物種具有發育垂直遷徙的行為,藉由耳石δ13C與δ18O相關性研判,應與能量的權衡有關,且不因其生殖策略而有所差異,顯示發育垂直遷徙是深海底棲性魚類中普遍採取的一種生活史策略。另外,成體棲息深度會影響到具有發育垂直遷徙物種的遷徙程度與模式:例如鼬鳚科中較深海的物種,遷徙模式以稚魚階段行漂浮性方式下降為主,沉降後深度變化不大,普遍而言,棲息在越深的物種其遷徙程度越大。 本研究顯示了不同分類群、生殖策略、棲息深度的深海底棲魚類採取不同的生活史模式,而各生活史階段在垂直深度上的多樣變化,暗示發育垂直遷徙為適應深海環境之重要策略以及深海魚類之多樣性。 | zh_TW |
dc.description.abstract | Early life history stage of deep sea demersal fishes is crucial to population survival. Population and community studies had reported that deep sea demersal species ususally have ontogenetic vertical migration (OVM) which they change their inhabiting depth in order to survive and develop. Fish otolith microstructure has been used to determine the ages of fish and life history stage. And stable isotope composition of oxygen and carbon (δ13C, δ18O) within calcium carbonates can record the environmental signals and physiological status of fish. Fish samples were collected in northeastern and southwestern Taiwan, north and east continental slope of South China Sea by research vessel (depth > 500 m), and from fish collected at DaiShi harbor (depth< 500 m). In this study, we investigate the ontogenetic vertical life histories of 17 species within 8 families of deep sea demersal fishes in autecological perspective, by analyzing otolith microstructure and stable isotope composition.
The results suggest that δ13C and δ18O reflect metabolism and environmental temperature respectively, prove individual to have OVM, and provide the habiting depth of early life stage of species. Whether early life history takes OVM or not is determined by reproductive tactics. (e.g., slickheads with large demersal egg with sufficient nutrient and development will not take OVM.) In settlement stage, most of the species take OVM unrelated to reproductive tactics and this is correlated to energy trade-off by the judge of δ13C-δ18O correlation, which suggests that OVM is a common life strategy in deep sea demersal fishes. Adult’s habitat depth may affect the distance and patterns of OVM. (e.g. deeper cusk eels migrate more and depend most of the migration on pelagic juvenile.) Generally, OVM distance increases with increasing habiting depth. Life history patterns of deep sea demersal fishes varied among taxonomy, reproductive tactics and habitat depth, displaying different adaptations or diverse life strategies to the deep sea environment, indicating the importance of OVM. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:45:28Z (GMT). No. of bitstreams: 1 ntu-102-R00241213-1.pdf: 4649687 bytes, checksum: 522ab9b6e54f7efedab8c7fe26f61f29 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 目錄 iv 表目錄 vii 圖目錄 viii 一、前言 1 1.1 深海環境與底棲魚類早期生活史 1 1.2 以耳石結構研究生活史 2 1.3 耳石穩定性碳與氧同位素值之應用 3 1.4 研究目的 4 二、材料方法 5 2.1 研究測站與魚類樣本 5 2.1.1 採樣測站 5 2.1.2 採樣方法 5 2.1.3 樣本處理 6 2.2利用耳石δ18O推估深度 7 2.2.1深度預測公式的選用 7 三、結果 9 3.1 水文資料 9 3.1.1 測站資料 9 3.1.2 溫鹽垂直梯度 9 3.1.3 推測水中δ18O 10 3.1.4 預測各深度的耳石δ18O 10 3.2 耳石結構 10 3.2.1 黑頭魚科的耳石結構 10 3.2.2 鼬鳚科、盲鼬鳚科的耳石結構 11 3.2.3 鮟鱇科、帶鰆科、鰧科、囊頭鮋科、新燈籠魚科的耳石結構 12 3.3 耳石穩定性同位素分析 13 3.3.1 黑頭魚科:暗首平頭魚(Alepocephalus umbriceps) 13 3.3.2 黑頭魚科:二色黑頭魚(Alepocephalus bicolor) 13 3.3.3 黑頭魚科:沖繩塔氏魚(Talismania okinawaensis)、渡瀨魯氏魚(Rouleina watasei) 14 3.3.4 黑頭魚科:平額魚(Xenodermichthys nodulosus) 14 3.3.5盲鼬鳚科:棕斑盲鼬鳚(Barathronus maculatus) 14 3.3.6鼬鳚科:熊吉單趾鼬鳚(Monomitopus kumae) 14 3.3.7鼬鳚科:重齒單趾鼬鳚(Monomitopus pallidus) 15 3.3.8 鼬鳚科:短絲指鼬鳚(Dicrolene tristis) 15 3.3.9 鼬鳚科:黑潮新鼬鳚(Neobythites sivicola) 15 3.3.10鼬鳚科:多斑新鼬鳚(Neobythites stigmosus) 16 3.3.11 鮟鱇科:黑口鮟鱇(Lophiomus setigerus) 16 3.3.12新燈籠魚科:大鱗新燈籠魚(Neoscopelus macrolepidotus) 16 3.3.13 鰧科:日本瞻星魚(Uranoscopus japonicus) 17 3.3.14 鰧科:土佐鰧(Uranoscopus tosae) 17 3.3.15帶鰆科:梭倫魣(Rexea prometheoides) 17 3.3.16 囊頭鮋科:長臂囊頭鮋(Setarches longimanus) 17 3.4 耳石穩定性同位素的發育變化類型 18 3.5 耳石碳與氧同位素的相關性 18 3.6 深度預測結果 19 四、討論 21 4.1 耳石微細結構探討魚類早期生活史 21 4.4.1變態與沉降記號的解讀 21 4.4.2耳石週期性輪紋的解讀 23 4.2 穩定性氧同位素 23 4.2.1以耳石δ18O判斷發育垂直遷徙 23 4.3 穩定性碳同位素 24 4.3.1 影響耳石δ13C的因子與解讀 24 4.3.2 由耳石δ18O與δ13C相關性看溫度對代謝的影響 26 4.4 耳石δ18O與δ13C與結構對照 27 4.5 各科魚種之發育垂直遷徙 28 4.5.1 盲鼬鳚科 28 4.5.2 鼬鳚科 29 4.5.3 黑頭魚科 30 4.5.4 鮟鱇科 32 4.5.5 新燈籠魚科 33 4.5.6 鰧科 33 4.5.7 帶鰆科 34 4.5.8 囊頭鮋科 34 4.6 垂直遷徙討論 35 4.6.1 生殖方法與遷徙的關係 35 4.6.2 棲息深度與遷徙的關係 38 五、結論 39 參考文獻 40 | |
dc.language.iso | zh-TW | |
dc.title | 以耳石微細結構與穩定性同位素組成探討深海底棲魚類之發育垂直遷徙 | zh_TW |
dc.title | Ontogenetic vertical migration of deep sea demersal fishes revealed by otolith microstructure and stable isotope composition | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 葉信明(Hsin-Ming Yeh),張至維(Chih-Wei Chang),王佳惠(Chia-Hui Wang) | |
dc.subject.keyword | 深海底棲魚類,穩定性同位素,發育垂直遷徙,生殖策略,生活史, | zh_TW |
dc.subject.keyword | deep sea demersal fish,stable isotope,ontogenetic vertical migration,reproductive tactic,life history, | en |
dc.relation.page | 101 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-20 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 4.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。