請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59001
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李伯皇(Po-Huang Lee),黃敏銓(Min-Chuan Huang) | |
dc.contributor.author | John Huang | en |
dc.contributor.author | 黃約翰 | zh_TW |
dc.date.accessioned | 2021-06-16T08:43:46Z | - |
dc.date.available | 2014-09-24 | |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-22 | |
dc.identifier.citation | Anand-Apte, B., B. R. Zetter, et al. (1997). 'Platelet-derived growth factor and fibronectin-stimulated migration are differentially regulated by the Rac and extracellular signal-regulated kinase pathways.' J Biol Chem 272(49): 30688-30692.
Baldus, S. E., T. K. Zirbes, et al. (2000). 'Thomsen-Friedenreich antigen presents as a prognostic factor in colorectal carcinoma: A clinicopathologic study of 264 patients.' Cancer 88(7): 1536-1543. Brockhausen, I. (1997). 'Biosynthesis and functions of O-glycans and regulation of mucin antigen expression in cancer.' Biochem Soc Trans 25(3): 871-874. Brockhausen, I. (1999). 'Pathways of O-glycan biosynthesis in cancer cells.' Biochim Biophys Acta 1473(1): 67-95. Brockhausen, I. (2006). 'Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions.' EMBO Rep 7(6): 599-604. Brown, M. C. and C. E. Turner (2004). 'Paxillin: adapting to change.' Physiol Rev 84(4): 1315-1339. Campbell, B. J., I. A. Finnie, et al. (1995). 'Direct demonstration of increased expression of Thomsen-Friedenreich (TF) antigen in colonic adenocarcinoma and ulcerative colitis mucin and its concealment in normal mucin.' J Clin Invest 95(2): 571-576. Cao, Y., U. R. Karsten, et al. (1995). 'Expression of Thomsen-Friedenreich-related antigens in primary and metastatic colorectal carcinomas. A reevaluation.' Cancer 76(10): 1700-1708. Chen, C. H., W. J. Wang, et al. (2005). 'Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK.' EMBO J 24(2): 294-304. Clement, M., J. Rocher, et al. (2004). 'Expression of sialyl-Tn epitopes on beta1 integrin alters epithelial cell phenotype, proliferation and haptotaxis.' J Cell Sci 117(Pt 21): 5059-5069. Crew, V. K., B. K. Singleton, et al. (2008). 'New mutations in C1GALT1C1 in individuals with Tn positive phenotype.' Br J Haematol 142(4): 657-667. Fu, J., H. Gerhardt, et al. (2008). 'Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice.' J Clin Invest 118(11): 3725-3737. Gabarra-Niecko, V., M. D. Schaller, et al. (2003). 'FAK regulates biological processes important for the pathogenesis of cancer.' Cancer Metastasis Rev 22(4): 359-374. Glading, A., R. J. Bodnar, et al. (2004). 'Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation.' Mol Cell Biol 24(6): 2499-2512. Gu, J., Y. Zhao, et al. (2004). 'Beta1,4-N-Acetylglucosaminyltransferase III down-regulates neurite outgrowth induced by costimulation of epidermal growth factor and integrins through the Ras/ERK signaling pathway in PC12 cells.' Glycobiology 14(2): 177-186. Guo, H. B., I. Lee, et al. (2002). 'Aberrant N-glycosylation of beta1 integrin causes reduced alpha5beta1 integrin clustering and stimulates cell migration.' Cancer Res 62(23): 6837-6845. Guo, W. and F. G. Giancotti (2004). 'Integrin signalling during tumour progression.' Nat Rev Mol Cell Biol 5(10): 816-826. Hanisch, F. G. and S. E. Baldus (1997). 'The Thomsen-Friedenreich (TF) antigen: a critical review on the structural, biosynthetic and histochemical aspects of a pancarcinoma-associated antigen.' Histol Histopathol 12(1): 263-281. Huang, C., K. Jacobson, et al. (2004). 'MAP kinases and cell migration.' J Cell Sci 117(Pt 20): 4619-4628. Huang, M. C., H. Y. Chen, et al. (2006). 'C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells.' Oncogene 25(23): 3267-3276. Huang, M. C., A. Laskowska, et al. (2002). 'The alpha (1,3)-fucosyltransferase Fuc-TIV, but not Fuc-TVII, generates sialyl Lewis X-like epitopes preferentially on glycolipids.' J Biol Chem 277(49): 47786-47795. Hunger-Glaser, I., E. P. Salazar, et al. (2003). 'Bombesin, lysophosphatidic acid, and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at Ser-910: requirement for ERK activation.' J Biol Chem 278(25): 22631-22643. Imada, T., Y. Rino, et al. (1999). 'Sialyl Tn antigen expression is associated with the prognosis of patients with advanced colorectal cancer.' Hepatogastroenterology 46(25): 208-214. Isaji, T., J. Gu, et al. (2004). 'Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration.' J Biol Chem 279(19): 19747-19754. Iwai, T., T. Kudo, et al. (2005). 'Core 3 synthase is down-regulated in colon carcinoma and profoundly suppresses the metastatic potential of carcinoma cells.' Proc Natl Acad Sci U S A 102(12): 4572-4577. Ju, T., R. P. Aryal, et al. (2008). 'Regulation of protein O-glycosylation by the endoplasmic reticulum-localized molecular chaperone Cosmc.' J Cell Biol 182(3): 531-542. Ju, T. and R. D. Cummings (2002). 'A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase.' Proc Natl Acad Sci U S A 99(26): 16613-16618. Ju, T. and R. D. Cummings (2005). 'Protein glycosylation: chaperone mutation in Tn syndrome.' Nature 437(7063): 1252. Ju, T., G. S. Lanneau, et al. (2008). 'Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc.' Cancer Res 68(6): 1636-1646. Ju, T., V. I. Otto, et al. (2011). 'The Tn antigen-structural simplicity and biological complexity.' Angew Chem Int Ed Engl 50(8): 1770-1791. Khaldoyanidi, S. K., V. V. Glinsky, et al. (2003). 'MDA-MB-435 human breast carcinoma cell homo- and heterotypic adhesion under flow conditions is mediated in part by Thomsen-Friedenreich antigen-galectin-3 interactions.' J Biol Chem 278(6): 4127-4134. Kitada, T., E. Miyoshi, et al. (2001). 'The addition of bisecting N-acetylglucosamine residues to E-cadherin down-regulates the tyrosine phosphorylation of beta-catenin.' J Biol Chem 276(1): 475-480. Klemke, R. L., S. Cai, et al. (1997). 'Regulation of cell motility by mitogen-activated protein kinase.' J Cell Biol 137(2): 481-492. Liu, Z. X., C. F. Yu, et al. (2002). 'Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association.' J Biol Chem 277(12): 10452-10458. Merry, A. H. and C. L. Merry (2005). 'Glycoscience finally comes of age.' EMBO Rep 6(10): 900-903. Mitoma, J., B. Petryniak, et al. (2003). 'Extended core 1 and core 2 branched O-glycans differentially modulate sialyl Lewis X-type L-selectin ligand activity.' J Biol Chem 278(11): 9953-9961. Mitra, S. K., D. A. Hanson, et al. (2005). 'Focal adhesion kinase: in command and control of cell motility.' Nat Rev Mol Cell Biol 6(1): 56-68. Montagnani, M., L. V. Ravichandran, et al. (2002). 'Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells.' Mol Endocrinol 16(8): 1931-1942. Park, J. H., T. Katagiri, et al. (2011). 'Polypeptide N-acetylgalactosaminyltransferase 6 disrupts mammary acinar morphogenesis through O-glycosylation of fibronectin.' Neoplasia 13(4): 320-326. Park, J. H., T. Nishidate, et al. (2010). 'Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis.' Cancer Res 70(7): 2759-2769. Playford, M. P. and M. D. Schaller (2004). 'The interplay between Src and integrins in normal and tumor biology.' Oncogene 23(48): 7928-7946. Reddy, K. B., S. M. Nabha, et al. (2003). 'Role of MAP kinase in tumor progression and invasion.' Cancer Metastasis Rev 22(4): 395-403. Remacle, A. G., A. V. Chekanov, et al. (2006). 'O-glycosylation regulates autolysis of cellular membrane type-1 matrix metalloproteinase (MT1-MMP).' J Biol Chem 281(25): 16897-16905. Sato, T., M. Gotoh, et al. (2003). 'Molecular cloning and characterization of a novel human beta 1,4-N-acetylgalactosaminyltransferase, beta 4GalNAc-T3, responsible for the synthesis of N,N'-diacetyllactosediamine, galNAc beta 1-4GlcNAc.' J Biol Chem 278(48): 47534-47544. Schietinger, A., M. Philip, et al. (2006). 'A mutant chaperone converts a wild-type protein into a tumor-specific antigen.' Science 314(5797): 304-308. Schlaepfer, D. D. and S. K. Mitra (2004). 'Multiple connections link FAK to cell motility and invasion.' Curr Opin Genet Dev 14(1): 92-101. Schneider, F., W. Kemmner, et al. (2001). 'Overexpression of sialyltransferase CMP-sialic acid:Galbeta1,3GalNAc-R alpha6-Sialyltransferase is related to poor patient survival in human colorectal carcinomas.' Cancer Res 61(11): 4605-4611. Seales, E. C., G. A. Jurado, et al. (2005). 'Hypersialylation of beta1 integrins, observed in colon adenocarcinoma, may contribute to cancer progression by up-regulating cell motility.' Cancer Res 65(11): 4645-4652. Seales, E. C., G. A. Jurado, et al. (2003). 'Ras oncogene directs expression of a differentially sialylated, functionally altered beta1 integrin.' Oncogene 22(46): 7137-7145. Sebolt-Leopold, J. S. and R. Herrera (2004). 'Targeting the mitogen-activated protein kinase cascade to treat cancer.' Nat Rev Cancer 4(12): 937-947. Shimodaira, K., J. Nakayama, et al. (1997). 'Carcinoma-associated expression of core 2 beta-1,6-N-acetylglucosaminyltransferase gene in human colorectal cancer: role of O-glycans in tumor progression.' Cancer Res 57(23): 5201-5206. Springer, G. F. (1997). 'Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy.' J Mol Med (Berl) 75(8): 594-602. Tarp, M. A. and H. Clausen (2008). 'Mucin-type O-glycosylation and its potential use in drug and vaccine development.' Biochim Biophys Acta 1780(3): 546-563. Toma, V., C. Zuber, et al. (1999). 'Specialized expression of simple O-glycans along the rat kidney nephron.' Glycobiology 9(11): 1191-1197. Wagner, K. W., E. A. Punnoose, et al. (2007). 'Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL.' Nat Med 13(9): 1070-1077. Wandall, H. H., H. Hassan, et al. (1997). 'Substrate specificities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:Polypeptide N-acetylgalactosaminyltransferase family, GalNAc-T1, -T2, and -T3.' J Biol Chem 272(38): 23503-23514. Wang, Y., T. Ju, et al. (2010). 'Cosmc is an essential chaperone for correct protein O-glycosylation.' Proc Natl Acad Sci U S A 107(20): 9228-9233. Xia, L. and R. P. McEver (2006). 'Targeted disruption of the gene encoding core 1 beta1-3-galactosyltransferase (T-synthase) causes embryonic lethality and defective angiogenesis in mice.' Methods Enzymol 416: 314-331. Yang, J. M., J. C. Byrd, et al. (1994). 'Alterations of O-glycan biosynthesis in human colon cancer tissues.' Glycobiology 4(6): 873-884. Yeh, J. C., N. Hiraoka, et al. (2001). 'Novel sulfated lymphocyte homing receptors and their control by a Core1 extension beta 1,3-N-acetylglucosaminyltransferase.' Cell 105(7): 957-969. Yoo, N. J., M. S. Kim, et al. (2008). 'Absence of COSMC gene mutations in breast and colorectal carcinomas.' APMIS 116(2): 154-155. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/59001 | - |
dc.description.abstract | 異常的細胞表面分子醣化現象跟細胞的惡性變化有很大的關連。腫瘤關連抗原, T 抗原 (Galbeta1, 3GalNAc) ,是一個癌胎兒碳水化合物抗原,在許多癌症上有表現。而 T抗原的表現會增加癌症轉移的機會,同時也和大腸直腸癌的不良預後相關。因此,T抗原可能可以是癌症疫苗治療的標的之一。然而,對於醣基因是怎樣調控T抗原的合成與表現,以及這些醣基因的功能,卻鮮少被人了解。為了瞭解在大腸直腸癌中,那些醣基因調控 T抗原的表現,我們首先從醣基轉移蛋白質的角度來了解。我們發現醣基轉移酵素beta1,4-N-acetylgalactosaminyltransferase III (beta4GalNAc-T3) 在生體外,可以合成 N,N'-diacetyllactosediamine, GalNAcbeta1,4GlcNAc。因為,我們研究beta4GalNAc-T3 在大腸直腸癌的表現,以及這樣的表現對 HCT116 大腸直腸癌細胞株的影響。 Real-time reverse transcription-PCR 的結果顯示, beta4GalNAc-T3 在 72.5% (n = 40) 的大腸直腸癌檢體中的表現量,相較於正常黏膜組織是增加的。beta4GalNAc-T3過度表現會增加細胞與細胞外間質的黏附,移行,無定錨細胞生長,以及大腸直腸癌細胞的侵襲。此外, beta4GalNAc-T3的過度表現還會增加裸鼠生體內腫瘤的生長以及轉移,並且減少裸鼠的存活。 beta4GalNAc-T3 的過度表現會增加局部黏附磷酸酶的酪胺酸磷酸化。同時也會增加樁蛋白質的磷酸化。這樣的結果顯示,過度表現的beta4GalNAc-T3 可能在癌症惡性化過程中扮演著重要的角色,而這樣的影響是經由整合素以及分裂素活化磷酸酶訊息傳導路徑而來。
在另外一個層次, Cosmc 是一個伴侶蛋白質分子,是T合成素形成,活化過程中所需要的蛋白質分子之一。所以可以催化T抗原的生成。然而,在大腸直腸癌中,過度表現的 Cosmc會造成怎樣的變化還不是很清楚。我們發現,利用 real-time PCR 顯示,過度表現的 Cosmc mRNA 跟腫瘤的期數有著正相關。在HCT116大腸直腸癌細胞株中,過度表現的可以顯著增加HCT116大腸直腸癌細胞株的T抗原表現。同時,也會增加細胞生長,移行,以及侵襲能力。這些都跟局部黏附磷酸酶,ERK, 以及Akt的磷酸化增加有關。我們同時發現 Cosmc 的過度表現可以增加生體內腫瘤生長以及減少SCID老鼠的存活。整體來看,這樣的結果顯示,Cosmc的過度表現會增加大腸直腸癌細胞的惡性表現,這樣的改變是經過 MEK/ERK以及 PI3K/Akt 的活化訊息傳導路徑。所以 Cosmc可能可以作為大腸直腸癌治療上的標的及指標。 | zh_TW |
dc.description.abstract | Aberrant glycosylation of cell surface molecules is associated with malignant transformation. Tumor-associated T antigen (Galbeta1, 3GalNAc) is an oncofetal carbohydrate antigen and expression of T antigen is associated with enhanced metastatic potential and poor prognosis in colorectal cancer。Therefore T antigen could be a potential target for vaccine of many cancers. However, the glycogenes responsible for regulating T antigen expression and their biological functions remain largely unknown. To identify the glycogenes that can regulate T antigen expression in colorectal adenocarcinomas. We found that The enzyme beta1,4-N-acetylgalactosaminyltransferase III (beta4GalNAc-T3) exhibits in vitro activity of synthesizing N,N'-diacetyllactosediamine, GalNAcbeta1,4GlcNAc. Here, we investigate the expression of beta4GalNAc-T3 in primary colon tumors and the effects of its overexpression on HCT116 colon cancer cells. Real-time reverse transcription-PCR showed that the expression of beta4GalNAc-T3 was up-regulated in 72.5% (n = 40) of primary colon tumors compared with their normal counterparts. beta4GalNAc-T3 overexpression resulted in enhanced cell-extracellular matrix adhesion, migration, anchorage-independent cell growth, and invasion of colon cancer cells. Moreover, beta4GalNAc-T3 overexpression increased tumor growth and metastasis and decreased survival of tumor-bearing nude mice. beta4GalNAc-T3 overexpression showed increased tyrosine phosphorylation of focal adhesion kinase and paxillin Y118 as well as increased extracellular signal-regulated kinase phosphorylation. These results suggest that up-regulation of beta4GalNAc-T3 may play a critical role in promoting tumor malignancy and that integrin and mitogen-activated protein kinase signaling pathways could be involved in the underlying mechanism.
In another level, Cosmc is a molecular chaperone required for the formation of an active T-synthase, which catalyzes the synthesis of T antigen. However, the expression and role of Cosmc in colorectal cancer are still unclear. Here, real-time PCR showed that overexpression of Cosmc mRNA in colorectal tumors compared with paired non-tumorous tissues was associated with increased American Joint Committee on Cancer (AJCC) tumor stage. Forced expression of Cosmc in HCT116 cells significantly increased T antigen expression and enhanced cell growth, migration, and invasion, which was associated with increased phosphorylation of focal adhesion kinase (FAK), ERK, and Akt. These Cosmc-enhanced malignant phenotypes were significantly suppressed by specific inhibitor of MEK or PI3K. We also found that Cosmc overexpression increased tumor growth and decreased survival of tumor-bearing SCID mice. Taken together, these results suggest that Cosmc promotes malignant phenotypes of colon cancer cells mainly via activation of MEK/ERK and PI3K/Akt signaling pathways, and that Cosmc may serve as a potential target for colorectal cancer treatment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:43:46Z (GMT). No. of bitstreams: 1 ntu-102-D93421103-1.pdf: 2712226 bytes, checksum: 4460db9e8a6b30b2a43200515118139e (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 中文摘要…………………………………………………………………………… … …3
英文摘要………………………………...........................................................................5 緒論…………………………………….......................................................................... 7 研究方法及材料………………………............................................................................15 結果………………………………………………………………………………………27 討論………………………………………………………………………………………59 展望………………………………………………………………………………………71 參考文獻………………………………………………………………….……………83 | |
dc.language.iso | zh-TW | |
dc.title | 醣科學於大腸直腸癌的角色 | zh_TW |
dc.title | The Role of Glycoscience in Colorectal Cancer | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 梁金銅(Jin-Tung Liang),賴逸儒(I-Rue Lai),楊偉勛(Wei-Shiung Yang),劉俊人(Chun-Jen Liu),魏柏立(Po-Li Wei) | |
dc.subject.keyword | 大腸直腸癌,醣基轉移酵素,伴侶蛋白質, | zh_TW |
dc.subject.keyword | colorectal cancer,glycosyltransferase,chaperone, | en |
dc.relation.page | 86 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2013-08-22 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。