請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58971完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙本秀 | |
| dc.contributor.author | Chen-Hsiu Sung | en |
| dc.contributor.author | 宋承修 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:41:54Z | - |
| dc.date.available | 2015-09-07 | |
| dc.date.copyright | 2013-09-07 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-09-04 | |
| dc.identifier.citation | 1. Hiltner, A., J. Cassidy, and E. Bear, Mechanical Properities of Biological Polymers. Annual Reviews Inc, 1985(15:455-82).
2. Tay, C.Y., et al., Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage. Exp Cell Res, 2010. 316(7): p. 1159-68. 3. Zhu, J., et al., The regulation of phenotype of cultured tenocytes by microgrooved surface structure. Biomaterials, 2010. 31(27): p. 6952-6958. 4. Uttayarat P. , et al., Microtopography and flow modulate the direction of endothelial cell migration. Am J Physiol Heart Circ Physiol 294, 2008: p. H1027–H1035. 5. Kim, H.J., et al., Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip, 2012. 12(12): p. 2165-74. 6. Zheng, W., et al., A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip, 2012. 12(18): p. 3441-50. 7. Raghavan, S., et al., Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng Part A, 2010. 16(7): p. 2255-63. 8. P., W., In Vitro Experiments on the Factors Determining the Course of the Outgrowing NEerve Fiber. J Exp Zool, 1934. 9. Hsu and C. P-HG, Mechanical Properties of Microcrimped Fibers and Their Effects on Ligament Fibroblasts, 2012. 10. Mellad, J.A., D.T. Warren, and C.M. Shanahan, Nesprins LINC the nucleus and cytoskeleton. Curr Opin Cell Biol, 2011. 23(1): p. 47-54. 11. Andrew J. Maniotis, Christopher S. Chen, and D.E. Ingber, Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. THE NATIONAL ACADEMY OF SCIENCES OF THE USA, 1997. Vol. 94: p. pp. 849–854. 12. Versaevel, M., T. Grevesse, and S. Gabriele, Spatial coordination between cell and nuclear shape within micropatterned endothelial cells. Nat Commun, 2012. 3: p. 671. 13. Tan, W., et al., Development and evaluation of microdevices for studying anisotropic biaxial cyclic stretch on cells. Biomed Microdevices, 2008. 10(6): p. 869-82. 14. Ahmed, W.W., et al., Myoblast morphology and organization on biochemically micro-patterned hydrogel coatings under cyclic mechanical strain. Biomaterials, 2010. 31(2): p. 250-8. 15. Kaneko, D., et al., Temporal effects of cyclic stretching on distribution and gene expression of integrin and cytoskeleton by ligament fibroblasts in vitro. Connect Tissue Res, 2009. 50(4): p. 263-9. 16. Chao, P.G., et al., Dynamic osmotic loading of chondrocytes using a novel microfluidic device. J Biomech, 2005. 38(6): p. 1273-81. 17. Lee, C.H., et al., Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 2005. 26(11): p. 1261-70. 18. Lee, S.W., et al., Differentially expressed genes in human gingival fibroblasts cultured on microgrooved titanium substrata: A pilot study. Tissue Engineering and Regenerative Medicine, 2012. 9(2): p. 75-83. 19. Surrao, D.C., et al., A crimp-like microarchitecture improves tissue production in fibrous ligament scaffolds in response to mechanical stimuli. Acta Biomater, 2012. 8(10): p. 3704-13. 20. Tseng, Q., et al., A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce cell contraction levels. Lab Chip, 2011. 11(13): p. 2231-40. 21. Chen, C.S., et al., Cell shape provides global control of focal adhesion assembly. Biochemical and Biophysical Research Communications, 2003. 307(2): p. 355-361. 22. Steinberg, T., et al., Strain response in fibroblasts indicates a possible role of the Ca(2+)-dependent nuclear transcription factor NM1 in RNA synthesis. Cell Calcium, 2011. 49(4): p. 259-71. 23. Mendez, M.G., S. Kojima, and R.D. Goldman, Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J, 2010. 24(6): p. 1838-51. 24. Kihara, T., et al., Physical properties of mesenchymal stem cells are coordinated by the perinuclear actin cap. Biochem Biophys Res Commun, 2011. 409(1): p.1-6. 25. Nathan, A.S., et al., Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater, 2011. 7(1): p. 57-66. 26. Yang, G., R.C. Crawford, and J.H. Wang, Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech, 2004. 37(10): p. 1543-50. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58971 | - |
| dc.description.abstract | 韌帶是由呈現平行的波浪狀結構膠原蛋白纖維所組成,而這種波浪狀結 構被認為是給予韌帶細胞較好的基因表現的主因。在先前的研究中指出,細 胞在有排列的基質上比起沒有排列的,有較好的第一型膠原蛋白基因表現, 而在我們先前的實驗中,把細胞種在波浪狀的電紡絲結構,基因表現比在平 行直線電紡絲中來得好,為了研究這個現象背後的主因,我們製作了直線和 不同曲率彎曲微結構的 PDMS 基質。實驗結果指出,細胞型態在不同的基 質上有顯著性差異存在;在平行直線組別中,細胞擁有最大的細胞以及細胞 核長寬比,而此數據會隨著曲率增加而減少,有趣的是細胞核密度卻和其他 細胞型態沒有明顯的關聯性存在,當我們施加細胞骨架抑制劑後,我們發現 actin 和 intermediate filaments 似乎影響了細胞核結構;另外我們也施加了 拉伸刺激,而這樣的刺激會藉由怎樣的機制影響細胞及其基因表現將會是我 們未來研究的方向。 | zh_TW |
| dc.description.abstract | Native ligament tissues are composed by wavy and parallel type I collagen fibers, and the wavy structures, known as crimp, are hypothesized to be instructive in the ligament phenotype. Previous studies demonstrated that aligned cells had better type I
collagen expression than cells on randomly oriented substrates. We previously found that cells on wavy PLLA fibers exhibit enhanced ligament phenotype than on straight fibers. In order to investigate the reason behind this phenomenon, we fabricated PDMS microgroove substrates with straight and wavy structure. The results show that different cell morphologies appear in straight, wavy, and 2X wavy pattern. In straight groups, cells have the largest cell and nuclear aspect ratios, which reduce with increasing curvature. Interestingly, there is no clear correlation between nuclear density and cell morphologies. After inhibitor treatment, it seems that actin and intermediate filaments both affect the nucleus structure. Additionally, we provided tensile loading. We will study the mechanism of tensile loading on cell mechanotransduction and phenotype. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:41:54Z (GMT). No. of bitstreams: 1 ntu-102-R00548015-1.pdf: 28533809 bytes, checksum: 6c2545f6e45c2bc09d048a8f4fa097c9 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘 要 ...................................................................................................................... I ABSTRACT ................................................................................................................... II CONTENTS ..................................................................................................................III
LIST OF FIGURES......................................................................................................IV CH1. INTRODUCTION ................................................................................................ 1 1.1 RESEARCH OBJECTIVE .......................................................................................... 1 1.2 MICROGROOVE SUBSTRATE .................................................................................. 2 1.3 CELL MORPHOLOGY .............................................................................................. 3 1.4 CYTOSKELETON AND NUCLEAR STRUCTURE........................................................ 4 1.5 MECHANICAL LOADING STIMULATION................................................................. 5 CH2. MATERIAL AND METHOD ............................................................................. 6 2.1 MICROFABRICATION .............................................................................................. 6 2.2 CELL CULTURE ...................................................................................................... 7 2.3 CELL MORPHOLOGY.............................................................................................. 8 2.4 CYTOSKELETON INHIBITOR TREATMENT ........................................................... 10 2.5 MECHANICAL LOADING ....................................................................................... 11 2.6 STATISTICAL ANALYSIS ....................................................................................... 12 CH3. RESULTS ............................................................................................................ 13 3.1 CELL MORPHOLOGY............................................................................................ 13 3.2 CELL MORPHOLOGY AFTER CYTOSKELETON INHIBITOR TREATMENT ........... 14 3.3 THE EFFECTS OF MECHANICAL LOADING .......................................................... 15 CH4. DISCUSSION...................................................................................................... 16 REFERENCE................................................................................................................ 36 | |
| dc.language.iso | en | |
| dc.subject | 膠原蛋白纖維 | zh_TW |
| dc.subject | 細胞骨架 | zh_TW |
| dc.subject | 組織工程 | zh_TW |
| dc.subject | 細胞型態 | zh_TW |
| dc.subject | 波浪狀結構 | zh_TW |
| dc.subject | cytoskeleton | en |
| dc.subject | tissue engineering | en |
| dc.subject | wavy structure | en |
| dc.subject | Type I collagen fiber | en |
| dc.subject | cell morphology | en |
| dc.title | 波浪狀微結構和機械拉伸對韌帶纖維母細胞的影響 | zh_TW |
| dc.title | Interaction of Wavy Structure and Mechanical Loading on Ligament Fibroblast Cell and Nuclear Behavior | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡偉博,趙玲 | |
| dc.subject.keyword | 組織工程,波浪狀結構,膠原蛋白纖維,細胞型態,細胞骨架, | zh_TW |
| dc.subject.keyword | tissue engineering,wavy structure,Type I collagen fiber,cell morphology,cytoskeleton, | en |
| dc.relation.page | 38 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-09-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 27.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
