請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58962
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周崇熙(Chung-Hsi JiuJiu Chou) | |
dc.contributor.author | Wei Thong | en |
dc.contributor.author | 唐維 | zh_TW |
dc.date.accessioned | 2021-06-16T08:41:20Z | - |
dc.date.available | 2016-08-25 | |
dc.date.copyright | 2014-08-25 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2014-01-15 | |
dc.identifier.citation | 行政院環境保護署。(2007)。一般廢棄物資源循環推動計畫。台北市。
行政院環境保護署。(2009)。各燃料排放係數表。 李春芳、蕭宗法、陳吉斌。(2001)。本省荷蘭種乾乳牛與生長女牛消化道甲烷產量測定。溫室氣體通量測定及減量對策論文集,3,157-172。 汪婷、何健、趙子如、李順鵬。(2005)。牛糞沼氣發酵過程中物質轉化、微生物生理群變化及產甲烷菌多樣性研究。中國沼氣,23,181-186。 吳宜庭。(2009)。台灣地區降雨量及乾旱對傳染性疾病分布之影響。 金門縣政府。(2012)。歷年垃圾清運量與資源回收率趨勢。 張韋豪。(2011)。台灣半導體產業環境管理與碳足跡現況及生命週期評估軟體需求探討。臺北科技大學環境工程與管理研究所學位論文,1-186。 郭猛德、蕭庭訓。(2009)。沼氣利用技術及實例。現代養豬,31,47-54。 陳廷威。(2012)。碳足跡標章對於消費者之影響-以台北地區購買罐裝茶飲料為例。 楊士瑩。(2012)。染料敏化太陽能電池生命週期之碳足跡及水足跡評估。臺北科技大學環境工程與管理研究所學位論文,1-88。 楊天樹。(2011)。氣候變遷與家畜禽健康的脆弱性。 楊英賢。(2012)。以碳足跡與生命週期成本探討生物可分解材(PLA)之應用之最適化研究。 嘉義市政府環境保護局。(2011)。100年度嘉義市垃圾減量廚餘回收及資源回收統計分析。嘉義。 趙厚誠。(2011)。道路設計對於行車碳排放之影響分析-以雪山隧道為例; Analysis on the influence of road design factors on vehicles CO2 emission: A Case Study of HsuehShan Tunnel. 鄭光利。(2012)。回收物質再利用之碳足跡評估方法及不確定性分析研究─ 以台灣鋼鐵業廢鋼為例。成功大學環境工程學系碩博士班學位論文。 龍沙平。(2005)。乳牛場環保設施。乳協50年特刊,74-90。 魏佩如。(2010)。產品碳足跡計算不確定性分析之研究。臺北科技大學環境工程與管理研究所學位論文,1-138。 譚鎮中、王銀波。(2000)。溫室氣體通量測定及減量對策。畜產廢棄物堆積及施用之甲烷釋放與減量對策(II),95-95。 Al-Suwaiegh S, Fanning KC, Grant RJ, Milton CT & Klopfenstein TJ. (2002). Utilization of distillers grains from the fermentation of sorghum or corn in diets for finishing beef and lactating dairy cattle. Journal of Animal Science, 80(4), 1105-1111. Anderson DB, Woods AL, Armstrong TA, Elam TE & Sutton AL. (2008). Environmental benefits of PayleanR use in United States finisher swine. Aye L, Bamford N, Charters B & Robinson J. (2002). The carbon footprint of a new commercial building. Paper presented at the 18th Annual ARCOM Conference. Benchaar C, Hassanat F, Gervais R, Chouinard PY, Julien C, Petit HV & Masse DI. (2013). Effects of increasing amounts of corn dried distillers grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production. Journal of Dairy Science. 96(4):2413-2427. Bertrand S & Barnett, J. (2011). A common carbon footprint approach for dairy. Animal Frontiers, 1(1), 14-18. Capper JL, Cady RA & Bauman DE. (2009). The environmental impact of dairy production: 1944 compared with 2007. Journal of Animal Science, 87(6), 2160-2167. Capper JL. (2011). Replacing rose-tinted spectacles with a high-powered microscope: The historical versus modern carbon footprint of animal agriculture. Animal Frontiers, 1(1), 26-32. Cashman S. (2009). Charting the course for sustainability at aurora organic dairy phase I: Energy & greenhouse gas life cycle assessment. The University of Michigan. Cederberg CPU, Martin N, Kristian MS & Clift R. (2011). Including carbon emissions from deforestation in the carbon footprint of Brazilian beef. Environmental Science & Technology, 45(5), 1773-1779. Chen KC, Huang SH & Lian IW. (2010). The development and prospects of the end-of-life vehicle recycling system in Taiwan. Waste Management, 30(8), 1661-1669. Clement J, Maes P, Barrios JM , Verstraeten WW, Amirpour HS, Ducoffre G, Aerts JM & Van RM. (2011). Global warming and epidemic trends of an emerging viral disease in Western-Europe: the nephropathia epidemica case. Global Warming Impacts–Case Studies on the Economy, Human Health, and on Urban and Natural Environments, 39-52. Crosson P, Shalloo L, O’Brien D, Lanigan GJ, Foley PA, Boland TM & Kenny DA. (2011). A review of whole farm systems models of greenhouse gas emissions from beef and dairy cattle production systems. Animal Feed Science and Technology, 166, 29-45. Crutzen PJ, Mosier AR, Smith KA & Winiwarter W. (2007). O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmospheric Chemistry and Physics, 7, 11191-11205. Daszak P, Cunningham AA & Hyatt AD. (2001). Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta tropica, 78(2), 103-116. DeKoning A, Schowanek D, Dewaele J, Weisbrod A & Guinee J. (2010). Uncertainties in a carbon footprint model for detergents; quantifying the confidence in a comparative result. The International Journal of Life Cycle Assessment, 15(1), 79-89. Edwards JG, Plassmann K & Harris IM. (2009). Carbon footprinting of lamb and beef production systems: insights from an empirical analysis of farms in Wales, UK. The Journal of Agricultural Science, 147(6), 707. FAO. (2010). Greenhouse gas emissions from the dairy sector: A Life Cycle Assessment. Ferng JJ. (2005). Local sustainable yield and embodied resources in ecological footprint analysis—a case study on the required paddy field in Taiwan. Ecological Economics, 53(3), 415-430. Finkbeiner M. (2009). Carbon footprinting—opportunities and threats. The International Journal of Life Cycle Assessment, 14(2), 91-94. Flachowsky G & Lebzien P. (2012). Effects of phytogenic substances on rumen fermentation and methane emissions: A proposal for a research process. Animal Feed Science and Technology, 176(1), 70-77. Flysjo A, Cederberg C, Henriksson M & Ledgard S. (2011). How does co-product handling affect the carbon footprint of milk? Case study of milk production in New Zealand and Sweden. The International Journal of Life Cycle Assessment, 16(5), 420-430. Flysjo A, Cederberg C, Henriksson M & Ledgard S. (2012). The interaction between milk and beef production and emissions from land use change–critical considerations in life cycle assessment and carbon footprint studies of milk. Journal of Cleaner Production, 28, 134-142. Flysjo A, Henriksson M, Cederberg C, Ledgard S & Englund JE. (2011). The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. Agricultural Systems, 104(6), 459-469. Grubb M, Vrolijk C, Brack D & Forsyth T. (1999). The Kyoto Protocol: a guide and assessment: Royal Institute of International Affairs London. Hamerschlag K. & Venkat K. (2011). Meat eaters guide. Henrie G. (2012). World Ecological Footprint per Capita. Henriksson M, Flysjo A, Cederberg C & Swensson C. (2011). Variation in carbon footprint of milk due to management differences between Swedish dairy farms. Animal, 5(9), 1474-1484. Hertwich EG & Peters GP. (2009). Carbon footprint of nations: A global, trade-linked analysis. Environmental Science & Technology, 43(16), 6414-6420. Hillier J, Whittaker C, Dailey G, Aylott M, Casella E, Richter GM, Riche A, Murphy R, Taylor G & Smith P. (2009). Greenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analyses. Global Change Biology Bioenergy, 1(4), 267-281. Hueffer K, Parkinson AJ, Gerlach R & Berner J. (2013). Zoonotic infections in Alaska: disease prevalence, potential impact of climate change and recommended actions for earlier disease detection, research, prevention and control. International Journal of Circumpolar Health, 72. Jay S, Jones C, Slinn P & Wood C. (2007). Environmental impact assessment: Retrospect and prospect. Environmental Impact Assessment Review, 27(4), 287-300. Jungbluth N, Busser S, Frischknecht R, Flury K & Stucki M. (2012). Feasibility of environmental product information based on life cycle thinking and recommendations for Switzerland. Journal of Cleaner Production, 28, 187-197. Kenny T & Gray NF. (2009). Comparative performance of six carbon footprint models for use in Ireland. Environmental Impact Assessment Review, 29(1), 1-6. Koistinen L, Pouta E, Heikkila J, Forsman-Hugg S, Kotro J, Makela J & Niva M. (2013). The impact of fat content, production methods and carbon footprint information on consumer preferences for minced meat. Food Quality and Preference. 29(2), 126-136. Laurent A, Olsen SI & Hauschild MZ. (2010). Carbon footprint as environmental performance indicator for the manufacturing industry. CIRP Annals-Manufacturing Technology, 59(1), 37-40. Lee KH. (2011). Integrating carbon footprint into supply chain management: the case of Hyundai Motor Company (HMC) in the automobile industry. Journal of Cleaner Production, 19(11), 1216-1223. Leggett JK. (2001). The carbon war: global warming and the end of the oil era: Psychology Press. Martin C, Morgavi DP & Doreau M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal, 4(3), 351-365. Matthews HS, Hendrickson CT & Weber CL. (2008). The importance of carbon footprint estimation boundaries. Environmental Science & Technology, 42(16), 5839-5842. Mills JAN, Crompton LA, Bannink A, Tamminga S, Moorby J & Reynolds CK. (2009). Predicting methane emissions and nitrogen excretion from cattle. The Journal of Agricultural Science, 147, 741. Mitloehner F, Sun H & Karlik J. (2009). Direct measurements improve estimates of dairy greenhouse-gas emissions. California Agriculture, 63(2), 79-83. Nilsson K, Flysjo A, Davis J, Sim S, Unger N & Bell S. (2010). Comparative life cycle assessment of margarine and butter consumed in the UK, Germany and France. The International Journal of Life Cycle Assessment, 15(9), 916-926. NOAA. (2013). Trends in Atmospheric Carbon Dioxide. Olstorpe M & Passoth V. (2012). Environmental and nutritional benefits of biopreservation of animal feed microorganisms in sustainable agriculture and biotechnology (pp. 17-34): Springer. Pachauri RK & Reisinger A. (2007). Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change. Peters GP. (2010). Carbon footprints and embodied carbon at multiple scales. Current Opinion in Environmental sustainability, 2(4), 245-250. Pirlo G. (2012). Cradle-to-farm gate analysis of milk carbon footprint: a descriptive review. Italian Journal of Animal Science, 11(1), 20. Rees WE. (1992). Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environment and Urbanization, 4(2), 121-130. Rotz CA, Montes F & Chianese DS. (2010). The carbon footprint of dairy production systems through partial life cycle assessment. Journal of Dairy Science, 93(3), 1266-1282. Satterthwaite D. (2008). Cities' contribution to global warming: notes on the allocation of greenhouse gas emissions. Environment and Urbanization, 20(2), 539-549. Schingoethe DJ. (2001). Feeding wet distillers grains to dairy cattle. Paper presented at the Proc. Distillers Grains Technol Council. 5th Ann. Symp. Louisuille, KY. Schingoethe DJ, Brouk MJ & Birkelo CP. (1999). Milk production and composition from cows fed wet corn distillers grains. Journal of Dairy Science, 82(3), 574-580. Sovacool BK & Brown MA. (2010). Twelve metropolitan carbon footprints: A preliminary comparative global assessment. Energy Policy, 38(9), 4856-4869. Stackhouse KR, Rotz CA, Oltjen JW & Mitloehner FM. (2012). Growth-promoting technologies decrease the carbon footprint, ammonia emissions, and costs of California beef production systems. Journal of Animal Science, 90(12), 4656-4665. Steinfeld H & Gerber P. (2010). Livestock production and the global environment: Consume less or produce better? Proceedings of the National Academy of Sciences, 107(43), 18237-18238. Steinfeld H, Gerbe, P, Wassenaar T, Castel V, Rosales M & De Haan C. (2006). Livestock's long shadow: FAO Rome. Thoma G, Popp J, Nutter D, Shonnard D, Ulrich R, Matlock M, Kim DS, Neiderman, Z, Kemper N & East C. (2010). Regional analysis of greenhouse gas emissions from milk production practices in the United States. Innovation Centre for US Dairy. Thoma G, Popp J, Nutter D, Shonnard D, Ulrich R, Matlock M, Kim DS, Neiderman, Z, Kemper N & East C. (2012). Greenhouse gas emissions from milk production and consumption in the United States: a cradle to grave life cycle assessment circa 2008. International Dairy Journal. 31(1), 3-14. Trust Carbon. (2007). Carbon footprint measurement methodology. Version, 1(1), 27. USDA. (2009). Simulation tools for design of the next gseneration of milk processing plants. Verge XPC, Dyer JA, Worth DE, Smith WN, Desjardins RL & McConkey BG. (2012). A greenhouse gas and soil carbon model for estimating the carbon footprint of livestock production in Canada. Animals, 2(3), 437-454. Wackernagel M, Kitzes J, Moran D, Goldfinger S & Thomas M. (2006). The ecological footprint of cities and regions: comparing resource availability with resource demand. Environment and Urbanization, 18(1), 103-112. Weidema BP, Thrane M, Christensen P, Schmidt J & Lokke S. (2008). Carbon footprint. Journal of Industrial Ecology, 12(1), 3-6. Wiedmann T. (2009). Editorial: carbon footprint and input–output analysis–an introduction. Wiedmann T & Minx J. (2007). A definition of ‘carbon footprint’. Ecological Economics Research Trends, 2, 55-65. Zhao R, Deutz P, Neighbour G & McGuire M. (2012). Carbon emissions intensity ratio: an indicator for an improved carbon labelling scheme. Environmental Research Letters, 7(1), 014. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58962 | - |
dc.description.abstract | 本研究重點在於探討國內畜產品中乳製品之碳足跡(Carbon footprint),其主目的可用於評估產品整體生命週期(Life cycle)中對於環境衝擊之程度;故藉調查結果中,可作為改善生產流程及消費者使用習慣之方針,進而將產品對環境的衝擊度降至最低,可有效改善氣候變遷,對於現行之人畜共通傳染疾病,有一定的幫助。另一方面,鮮乳為人類蛋白質來源中重要之一環,也是造成碳排放(Carbon emission)重大的原因之一,調查對象為台灣大學、嘉義大學之教學牧場,及金門縣畜產試驗所產銷之鮮乳。主要研究方向有四:(i)針對同年度中,不同單位及不同畜養頭隻數量中所造成之碳排放差異;(ii)後續消費端的使用習慣是否有造成更大的差距、(iii)同調查單位中碳足跡之變化狀況以及探討在台灣,降低碳足跡之後的後續發展及利用、(iv)試著以調查結果針對各調查單位提出改善策略。結果如下:(i)教學牧場所產鮮乳相較於金門縣畜試所之碳足跡,有明顯較高之狀況,特別在製造過程中,教學牧場鮮乳造成之碳排放高出15%~77%(台大牧場:1.29KgCO2(e)/Kg milk,嘉大牧場:0.84KgCO2(e)/Kg milk,金門縣畜試所:0.73KgCO2(e)/Kg milk);(ii) 消費者及商家的使用習慣確然造成碳足跡之改變,品牌優勢及數量將會造成在消費者使用所造成之碳足跡降低(台大牧場:0.13KgCO2(e)/Kg milk,嘉大牧場:0.28KgCO2(e)/Kg milk,金門縣畜試所:0.20KgCO2(e)/Kg milk);(iii) 針對同一單位中之狀況,其畜養政策方針會明顯改變生產階段碳足跡之趨勢,變動幅度可高達60%之巨(金門畜試所2012年:1.17KgCO2(e)/Kg milk,2011年:0.73KgCO2(e)/Kg milk);(iv) 台大牧場方面,若從提升飼養頭數及使用在地原料切入,則可降低15%現有碳足跡(現今:3.26 KgCO2(e)/Kg milk,改良:2.77KgCO2(e)/Kg milk);嘉大牧場方面,除使用在地原料外,也可從運輸路徑及回收方面做改良,共可降低8%之總碳足跡(現有情況:3.20 KgCO2(e)/Kg milk,改良後2.96KgCO2(e)/Kg milk);最後為金門縣畜試所,將島上運輸路線最佳化及配合政策提升回收率,將可降低6%總碳足跡(現今:3.05 KgCO2(e)/Kg milk,改良:2.89 KgCO2(e)/Kg milk);總結,以公共衛生及預防醫學之角度而言,碳足跡為一項監控流行疫病暨牧場管理之技術,若能將碳足跡盤查技術引進至各畜產品中,並且能針對碳排放量較大之階段落實改善,在無須改變民眾飲食習慣與兼具食品安全之前提下,將可提升能源利用效率及經濟效益;但碳足跡並非唯一衡量氣候變遷之工具,過度追求碳排放減量會適得其反,唯有妥善利用本工具才可替人類未來創造出更大之功效。 | zh_TW |
dc.description.abstract | The research focuses on investigating the carbon footprint of domestic animal products. Carbon footprint is a significant topic which covering various domain in daily life, assessing the impact on environment from the whole life cycle of the products. Therefore, by surveying the carbon footprint of animal products, it may offer improved proposals to manufacturers or terminal consumers, what is more reducing the impact to environment from products, effectively improving the existing climatic deterioration and descending the incidence rate of zoonotic disease. Milk is an important animal product which providing animal protein, also causing significant carbon emission. The study about carbon footprint of milk from three sources: National Taiwan University educational farm (NTU farm), National Chia-Yi University educational farm (NCYU farm) and Livestock Research Institute (LRI farm) in Kimmen county, and trying to realize four targets: (i) The difference of carbon emissions in each institutions in same year. (ii) Figure out if there is any difference between the usages of terminal consumers. (iii) The continuous change of carbon footprint in same institution. (iv) Try to propose improvement plan from finding. And the result comes: (i) The carbon footprint of milk from two educational farms are higher than the one from Livestock Research Institute, and the latter is especially 13-43% lower than the former on producing process (NTU farm: 1.29KgCO2(e)/Kg milk,NCYU farm:0.84KgCO2(e)/Kg milk,LRI:0.73KgCO2(e)/Kg milk). (ii) The habit of customers and retailers could make carbon emission differences because the brand advantage and quantity (NTU farm: 0.13KgCO2(e)/Kg milk,NCYU farm:0.28KgCO2(e)/Kg milk,LRI:0.20KgCO2(e)/Kg milk). (iii) The policy guidelines alternation could make carbon footprint dramatic change on producing stage in the same institution, about 60% (LRI:1.17KgCO2(e)/Kg milk in 2012 and 0.73KgCO2(e)/Kg milk in 2011). (iv) NTU farm: By rising herd and domestic forage using ratio,it could lower 15% carbon footprint (Now: 3.26 KgCO2(e)/Kg milk; Improved: 2.77KgCO2(e)/Kg milk); NCYU farm,Besides rising domestic forage using ratio, optimizing transporting route and recycle could lower 8% carbon footprint (Now: 3.20 KgCO2(e)/Kg milk; Improved: 2.96KgCO2(e)/Kg milk); LRI farm,By optimizing transporting route and recycle, it could lower 6% carbon footprint (Now: 3.05 KgCO2(e)/Kg milk; Improved: 2.89 KgCO2(e)/Kg milk);In public health and preventive medicine view, carbon footprint is a tool which could monitor epidemic disease and manage farm; By applying the technology to every animal products and improving high carbon emission portion, it could rise efficiency of energy using and economic. But carbon footprint is not the only one tool to measure climate change, excessively pursuing will cause the opposite effect; Only by proper using the tool could make greater benefit in the future. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:41:20Z (GMT). No. of bitstreams: 1 ntu-102-R00629031-1.pdf: 1520566 bytes, checksum: 8316eb015a9081fba541eca047c0101d (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 口試委員會審定書...................................................................#
誌謝...............................................................................i 中文摘要..........................................................................ii 英文摘要..........................................................................iv 目錄..............................................................................vi 圖目錄.............................................................................x 表目錄...........................................................................xii 第一章 緒言........................................................................1 第二章 文獻回顧....................................................................4 第一節 氣候變遷與成因..............................................................4 第二節 碳足跡的起源與應用..........................................................6 生態足跡(Ecological Footprint).....................................................6 碳足跡的規範與應用範疇.............................................................7 第三節 國際間碳足跡應用暨畜產品碳足跡發展現況.....................................10 畜產品碳足跡發展狀況..............................................................11 鮮乳生命週期碳足跡分布比重........................................................13 牛隻飼養因素......................................................................13 牧場相關因素......................................................................14 其他變數因子......................................................................15 第四節 台灣碳足跡各領域研究應用...................................................16 第三章 材料與方法.................................................................18 第一節 碳足跡認證標準.............................................................18 ISO 14064 and PAS 2050............................................................18 國際鮮乳生命週期碳足跡調查方針....................................................19 台灣碳足跡計算標準................................................................22 第二節 資料調查收集...............................................................23 廠商資料收集前置作業..............................................................23 現場資料收集......................................................................23 背景資料調查......................................................................24 民眾問卷分析......................................................................24 資料彙整計算......................................................................24 第四章 調查結果...................................................................26 第一節 台灣大學牧場鮮乳生命週期碳足跡.............................................26 「飼養原料製造」至「運輸至處理廠」階段之碳足跡....................................26 「加工過程」及「包裝」階段之碳足跡................................................28 「分佈配送」與「銷售行為」階段之碳足跡............................................28 「消費者使用」及「廢棄回收階段」階段之碳足跡......................................29 第二節 嘉義大學牧場鮮乳生命週期碳足跡.............................................31 「飼養原料製造」至「運輸至處理廠」階段之碳足跡....................................31 「加工過程」及「包裝」階段之碳足跡................................................32 「分佈配送」與「銷售行為」階段之碳足跡............................................33 「消費者使用」及「廢棄回收階段」階段之碳足跡......................................34 第三節 金門縣畜產試驗所鮮乳生命週期碳足跡.........................................36 「飼養原料製造」至「運輸至處理廠」階段之碳足跡....................................36 「加工過程」及「包裝」階段之碳足跡................................................37 「分佈配送」與「銷售行為」階段之碳足跡............................................38 「消費者使用」及「廢棄回收階段」階段之碳足跡......................................39 第四節 鮮乳生命週期碳足跡量之歷年改變.............................................40 台灣大學鮮乳生命週期碳足跡之動態趨勢..............................................40 嘉義大學鮮乳生命週期碳足跡之動態趨勢..............................................40 金門縣畜產試驗所碳足跡之動態趨勢..................................................41 第五章 討論.......................................................................42 第一節 鮮乳生命週期碳足跡分布比較.................................................42 第二節 各單位調查間之差異.........................................................43 國際間的畜養狀況..................................................................43 教學牧場與國際牧場的比較..........................................................44 金門縣畜試所與教學牧場之比較......................................................45 第三節 鮮乳生命週期碳足跡的變化探討...............................................46 台大鮮乳碳足跡變化原因............................................................46 嘉大鮮乳碳足跡變化原因............................................................47 金門縣畜試所鮮乳碳足跡變化原因....................................................47 交互比較結果......................................................................49 第四節 碳足跡改善策略研究.........................................................50 酒槽飼料的經濟價值與衛生概念......................................................50 各調查單位之建議改善方針..........................................................50 牧場管理與政策....................................................................53 第六章 結論與展望.................................................................55 參考文獻..........................................................................59 附錄..............................................................................99 | |
dc.language.iso | zh-TW | |
dc.title | 鮮乳產品碳足跡的計算及改善策略之研究 | zh_TW |
dc.title | The Carbon Footprint Invention of Fresh Milk and Its Amelioration | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳億乘(Yi-Chen Chen) | |
dc.contributor.oralexamcommittee | 張紹光(Shao-Kuang Chang),許桂森(Kuei-Sen Hsu),林政緯(Zheng-wei Lin) | |
dc.subject.keyword | 碳足跡,鮮乳,碳排放,教學牧場,畜產品,PAS 2050,ISO14064,生命週期盤查, | zh_TW |
dc.subject.keyword | Carbon Footprint,fresh milk,carbon emission,animal products, | en |
dc.relation.page | 113 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-01-16 | |
dc.contributor.author-college | 獸醫專業學院 | zh_TW |
dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 1.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。