Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58930
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林金福(King-Fu Lin)
dc.contributor.authorHsiao-Li Linen
dc.contributor.author林筱莉zh_TW
dc.date.accessioned2021-06-16T08:39:24Z-
dc.date.available2016-11-05
dc.date.copyright2013-11-05
dc.date.issued2013
dc.date.submitted2013-10-03
dc.identifier.citation[1] World in Transition - Towards Sustainable Energy Systems, German Advisory Council on Global Change, 2003, http://www.wbgu.de/wbgu_jg2003_kurz_engl.html
[2] 蔡松雨, 工業材料雜誌 2010;284:100
[3] 郭哲瑋、張仁銓、謝東坡、莊佳智、蔡松雨,工業材料雜誌 2010;284:101-109
[4] W. Hoffmann, 'PV solar electricity industry: Market growth and perspective', Solar Energy Materials & Solar Cells 2006;90: 3285–3311
[5] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya , 'Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell', Nature 1976;261:402-403
[6] B. O’regan, M. Gratzel, 'A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films', Nature 1991;353:737 – 740
[7] C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, 'Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications', Journal of the American Ceramic Society 1997; 80:3157–3171
[8] 李佳樺, 工業材料雜誌 2011;292:94-99
[9] M. Gratzel, 'Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells', Journal of Photochemistry and Photobiology A: Chemistry 2004;164:3-14
[10] 王麗萍、蔡松雨,工業材料雜誌 2010;280:143-153
[11] M. Gratzel, 'Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells', Inorganic Chemistry 2005 ;44(20):6841-6851
[12] 蔡松雨,工業材料雜誌 2007,241:103-110
[13] M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel, 'Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell', The Journal of Physical Chemistry B 2003;107:8981-8987.
[14] 張仕欣, 工業材料雜誌 2005,225:91-101
[15] S. Ito, N.C. Ha, G. Rothenberger, P. Liska, P. Comte, S. Zakeeruddin, P. Pe’chy, M. Nazeeruddin, M. Gratzel, 'High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode', Chemical Communications 2006;38: 4004–4006
[16] 閔庭輝、姬梁文、陳文瑞、陳胤維、邱騰震,科儀新知 2007;5(28):22-30
[17] 葉素敏,工業材料雜誌 2007;248:162-168
[18] 童永樑,工業材料雜誌 2008;255:109-123
[19] S.W. Rhee, W. Kwon, 'Key technological elements in dye-sensitized solar cells (DSC)', Korean Journal of Chemical Engineering 2011;28: 1481-1494
[20] I.A. Courtney, J.R. Dahn, 'Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites', Journal of The Electrochemical Society 1997;144(6):2045-2052
[21] G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, P. Wang, ”High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer”, Chemical Communication 2009; 2198–2200
[22] 李佳樺,工業材料雜誌 2011;292:94-99
[23] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E. W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Gratzel, 'Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency', Science 2011;334:629-634
[24] 黃呈加,工業材料雜誌2002,192:96-101
[25] X. Chen, S.S. Mao, 'Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications', Chemical Reviews 2007; 107:2891-2959
[26] X. Bokhimi, A. Morales, M. Aguilar, J.A. Toledo-Antonio, F. Pedraza, 'Local order in titania polymorphs', International Journal of Hydrogen Energy 2001;26:1279–1287
[27] D. Reyes-Coronado, G. Rodr’ıguez-Gattorno, M.E.-Pesqueira, C. Cab, R. de Coss1, G. Oskam, 'Phase-pure TiO2 nanoparticles: anatase, brookite and rutile', Nanotechnology 2008;19: 145605
[28]A.N. Banerjee, 'The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures', Nanotechnology, Science and Applications 2011;4: 35–65
[29] M. Koelsch, S. Cassaignon, C. Ta Thanh Minh, J.-F. Guillemoles, J.-P. Jolivet, 'Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium', Thin Solid Films 2004; 451-452:86–92
[30 ] N.-G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A.J. Frank, 'Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4', The Journal of Physical Chemistry B 1999;103:3308-3314
[31] K.-J. Jiang, T. Kitamura, H. Yin, Seigo Ito, S. Yanagida, 'Dye-sensitized Solar Cells Using Brookite Nanoparticle TiO2 Films as Electrodes', Chemistry Letters 2002;31(9):872-873
[32] N.G. Park, J. van de Lagemaat, A.J. Frank, 'Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells', The Journal of Physical Chemistry B 2000; 104:8989-8994
[33] E.A. Barringer, H.K. Bowen, 'High-Purity Monodisperse TiO2 Powders by Hydrolysis of Titanium Tetraethoxide. 2. Aqueous Interfacial Electrochemistry and Dispersion Stability,' Langmuir 1895; 1:420–428
[34] J.H. Jean , T. A. Ring, 'Nucleation and Growth of Monosized TiO2 Powders from Alcohol Solution', Langmuir 1986;2: 251–255.
[35] J.L. Look, C.F. Zukoski, 'Alkoxide-Derived Titania Particles: Use of Electrolytes to Control Size and Agglomeration Levels', Journal of the American Ceramic Society 1992;75(6):1587–1595
[36] J.L. Look ,C.F. Zukoski, 'Colloidal Stability of Titania Precipitate Morphology: Influence of Short-Range Repulsions', Journal of the American Ceramic Society 1995;78 (1):21-32
[37] V.J. Nagpal, R.M. Davis, J.S. Riffle, 'In Situ Steric Stabilization of Titanium Dioxide Particles Synthesized by a Sol–Gel Process', Colloids and Surfaces 1994;87:25–31
[38] Q. Xu, M.J. Gieselmann, M.A. Anderson, 'The Colloid Chemistry of Ceramic Membranes', Polymeric Materials: Science and Engineering 1989 ;61:889–893
[39] M.A. Anderson, M.J. Gieselmann, Q. Xu, 'Titania and Alumina Ceramic Membranes', Journal of Membrane Science 1988; 39: 243–258
[40] C. Lijzenga, V.T. Zaspalis, K. Keizer, A.J. Burrgraaf, K.P. Kumar, C.D. Ransjin, 'Nanostructure Characterization of Titania Membranes', Key Engineering Materials1991;61&62:379–382
[41] D. Vorkapic , T. Matsoukas, 'Effect of Temperature and Alcohols in the Preparation of Titania Nanoparticles from Alkoxides', Journal of the American Ceramic Society 1998; 81(11):2815–2820
[42] 蔡松雨,工業材料雜誌2007;241:103-110
[43] G.P. Smestad, 'Education and solar conversion: Demonstrating electron transfer', Solar Energy Materials and Solar Cells 1998;55:157-178
[44] 崔孟晉,工業材料雜誌 2008,257:185-193
[45] L.M. Goncalves , V. de Z. Bermudez , H.A. Ribeiro , A.M. Mendes, 'Dye-sensitized solar cells: A safe bet for the future', Energy & Environmental Science 2008;1: 655-667
[46] S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt,'Design of Organic Dyes and Cobalt Polypyridine Redox Mediators for High-Efficiency Dye-Sensitized Solar Cells', Journal of the American Chemical Society 2010; 132:16714–16724
[47] P. Wang, S. M. Zakeeruddin, I. Exnar, M. Gratzel, 'High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte', Chemical Communications 2002;2972-2973.
[48 ] N. Mohmeyer , D. Kuang, P. Wang, H.W. Schmidt, S. M. Zakeeruddin, M. Gratzel, 'An efficient organogelator for ionic liquids to prepare stable quasi-solid-state dye-sensitized solar cells', Journal of Materials Chemistry 2006;16:2978-2983.
[49] H. Matsui,K. Okada, T. Kawashima, T. Ezure, N. Tanabe, R. Kawano,M. Watanabe, 'Application of an ionic liquid-based electrolyte to a 100 mm×100 mm sized dye-sensitized solar cell', Journal of Photochemistry and Photobiology A: Chemistry 2004;164:129-135.
[50] I. Chun, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidis, 'All-solid-state dye-sensitized solar cells with high efficiency', Nature 2012;485:486-489
[51] L.M. Goncalves , V.Z. Bermudez , H.A. Ribeiro, A.M. Mendes, 'Dye-sensitized solar cells: A safe bet for the future', Energy & Environmental Science 2008;1: 655-667
[52] T.N. Murakami , M. Gratzel, 'Counter electrodes for DSC: Application of functional materials as catalysts', Inorganica Chimica Acta 2008; 361 :572–580
[53] J. Rostalski, D.Meissner, 'Monochromatic versus solar efficiencies of organic solar cells', Solar energy materials and solar cells 2000;61:87-95.
[54] 陳頤承、郭昭顯、陳俊亨,工業材料雜誌;258:249-256
[55]http://www.wacom-ele.co.jp/products/solar/normal/
[56] B.A. Gregg, F. Pichot, S. Ferrere, C.L. Fields, 'Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces' The Journal of Physical Chemistry B 2001;105:1422-1429
[57] 文克剛, '可交聯光敏劑與雙成份離子溶液電解質在染敏太陽能電池光電性質之研究',台灣大學高分子科學與工程研究所 碩士論文2010
[58] N. Duffy, L.Peter, R. Rajapakse, K. Wijayantha, 'Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells.' The Journal of Physical Chemistry B 2000,104:8916-8919
[59] 林江珍、林嵩祚,中華民國石油季刊 2005;41(3):47-59
[60] 張文聖、黃建良,工業材料雜誌 2007;243:92-97
[61] P. C. Ma, N.A. Siddiqui, G. Marom, J.K. Kim, 'Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review', Composites Part A: Applied Science and Manufacturing 2010;41:1345-1367
[62] D.S. Bethune, C.H. Klang, M.S. De Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, 'Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls', Nature 1993;363:605–607.
[63] S Iijima, ”Helical microtubules of graphitic carbon”,Nature 1991; 354:56–58
[64] J.C.Chang and A. G. MacDiarmid, Synth. Met. 1986, 13, 193.
[65] W.S. Huang, B. D. Humphrey and A. G. MacDiarmid, J. Chem. Soc.Faraday Trans. 1986, 82, 2385.
[66]K. Nishio, M. Fujimoto, Journal of Power Sources, 56, 189-192 (1995).
[67] K.W.Evelyn Lai, P. D. Beattie, S. Holdcroft*, Synth. met., 84, 87-88(1997).
[68] B.Wang, J. Tang, Synth. met., 13, 329-334 (1986).
[69] K.Koziel, M. Lapkowski and S. Lefrant, Synth. met., 69, 217-218(1995).
[70] P. Rannou, M. Nechtschein*, Synth. met., 84, 755-756 (1997).
[71] M. C. Bernard, A. H. Goff, Synth. met., 81, 215-219 (1996).
[72] S. Mu*, H. Xue, Sensors and Actuators (31), 155-160 (1996).
[73] G. Decher, Science ,Vol. 277 , 29 AUGUST 1997
[74] M.Durr, A.Yasuda, and G. Nelles, ' On the origin of increased open circuit voltage of dye-sensitized solar cells using 4-tert-butyl pyridine as additive to the electrolyte ' APPLIED PHYSICS LETTERS 89, 061110 , 2006
[75] P. L. Anto, R. J. Anto, H. T.Varghese, C. Y. Panicker, D. Philipe and A. G. Brolof, ' FT-IR, FT-Raman and SERS spectra of anilinium sulfate ' J. Raman Spectrosc. 2009, 40, 1810–1815
[76] Y.Mohd, R.Ibrahim, M.F.Zainal' Electrodeposition and Characterization of Polyaniline Films ' 2012 IEEE Symposium on Humanities, Science and Engineering Research
[77] D.J.Schmidt, E.M.Pridgen, P. T. Hammond, J. C. Love, ' Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film ', Journal of ChemicalEducation 87.2 (2010): 208–211
[78] C.H. Hsu, H.Y. Liao, and P.L. Kuo, ' Aniline as a Dispersant and Stabilizer for the Preparation of Pt Nanoparticles Deposited on Carbon Nanotubes', J. Phys. Chem. C 2010, 114, 7933–7939
[79] P.L.Kuo , C.H. Hsu , W.T. Li , J.Y.Jhan , W.F.Chen , ' Sea urchin-like mesoporous carbon material grown with carbon nanotubes as a cathode catalyst support for fuel cells', Journal of Power Sources 195 (2010) 7983–7990
[80] J. Vivekanandan, V. Ponnusamy, A. Mahudeswaran and P. S. Vijayanand, ' Synthesis characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods', Archives of Applied Science Research, 2011, 3 (6):147-153
[81] G. Zhu, L. Pan,* T. Lu, T. Xu and Z. Sun, ' Electrophoretic deposition of reduced graphene-carbon nanotubes composite films as counter electrodes of dye-sensitized solar cells', J. Mater. Chem., 2011, 21, 14869–14875
[82] E. C. Venancio, C. A. R. Costa, S.A.S. Machado, A.J. Motheo*,Electrochemistry Communications, 3, 229-233 (2001).
[83]A. V. Kulikov, Y. L. Kogan, L.S. Fokeeva, Synth. met., 69, 223-224(1995).
[84]P. A. Kilmartin and G. A. Wright*, Electrochim. acta., 41 (10),1677-1687 (1996).
[85]M. C. Bernard, V. T. Bich*, Synth. met., 101, 811-812 (1999).
[86]A. Kitani, M. Kaya, J. Yano, K. Yoshikawa, Synth. met., 18, 341-346
[87] H. Kim, H.Choi, S.Hwang, Y.Kim and M.Jeon*, ' Fabrication and characterization of carbon-based counter electrodes prepared by electrophoretic deposition for dye-sensitized solar cells', Nanoscale Research Letters 2012, 7:53
[88] S.Sakurai, H.Q.Jiang, M.Takahashi, K. Kobayashi ' Improvement of Carbon-Based Counter Electrode for Dye-Sensitized Solar Cells', Bull. Chem. Soc. Jpn. Vol. 84, No. 1, 125–131 (2011)
[89] X.Lia, Y.S.Weib, Q.Jinc and T. Ren , ' Expanded Graphite/Carbon Nanotube as Counter Electrode for DSSCs', Advanced Materials Research Vols. 311-313 (2011) pp 1246-1249
[90] Z.Li ,B.Ye , X. Hu , X. Ma, X. Zhang ,Y. Deng , ' Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell', Electrochemistry Communications 11 (2009) 1768–1771
[91] S. H. Park, K.H. Shin, J.Y. Kim, S. J. Yoo, K. J. Lee, J. Shin, J. W. Choi, J. Jang, Y.E. Sung, ' The application of camphorsulfonic acid doped polyaniline films prepared on TCO-free glass for counter electrode of bifacial dye-sensitized solar cells 'Journal of Photochemistry and Photobiology A: Chemistry 245 (2012) 1– 8
[92] C.Y.Liu , K.C.Huang , P.H.Chung , C.C.Wang , C.Y.Chen , R.Vittal , C.G.Wu , W.Y. Chiu , K.C.Ho , ' Graphene-modified polyaniline as the catalyst material for the counter electrode of a dye-sensitized solar cell', Journal of Power Sources 217 (2012) 152e157
[93] J. Z. , T. Hreid , X.Li , W. Guo , L.Wang , X. Shi , H. Su , Z.Yuan, ' Nanostructured polyaniline counter electrode for dye-sensitised solar cells:Fabrication and investigation of its electrochemical formation mechanism', Electrochimica Acta xxx (2010) xxx–xxx
[94] L. J. Brennan , M.T.Byrne , M.Bari , and Y. K. Gunko*, ' Carbon Nanomaterials for Dye-Sensitized Solar Cell Applications: A Bright Future ', Adv. Energy Mater. 2011, 1, 472–485
[95] F. Gong , X. Xu , G. Z. and Z.S.Wang , ' Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells ', Phys. Chem. Chem. Phys., 2013, 15, 546--552
[96] Q.Tai , B. Chen , F. Guo , S. Xu , H. Hu , B. Sebo , and X. Z. Zhao , ' In Situ Prepared Transparent Polyaniline Electrode and Its Application in Bifacial Dye-Sensitized Solar Cells' , Nano Letter VOL. 5 ’ NO. 5 ’ 3795–3799 ’ 2011
[97] Q. Qin , J. Tao , Y. Yang , X. Dong , ' In Situ Oxidative Polymerization of Polyaniline Counter Electrode on ITO Conductive Glass Substrate', Polymer Engineering and Science—2011
[98] Q. Li, J. Wu*, Q. Tang , Z. Lan, P. Li, J. Lin, L. Fan , ' Nanostructured polyaniline counter electrode for dye-sensitised solar cells: Fabrication and investigation of its electrochemical formation mechanism', Electrochemistry Communications 10 (2008) 1299–1302
[99] H. Lin , F. Hao , C.F.Lin and J.B.Li , ' Highly catalytic active nanostructured Pt electrodes for dye-sensitized solar cells prepared by low temperature electrodeposition ', Functional Materials Letters Vol. 4, No. 1 (2011) 7–11
[100] W.S. Chi, J. W. Han, S. Yang, D. K. Roh, H. Lee* and J. H. Kim, ' Employing electrostatic self-assembly of tailored nickel sulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counter electrodes ' Chem. Commun., 2012, 48, 9501–9503
[101] L. J. Brennan, M. T. Byrne, M. Bari , and Y. K. Gunko*, ' Carbon Nanomaterials for Dye-Sensitized Solar Cell Applications: A Bright Future', Adv. Energy Mater. 2011, 1, 472–485
[102] H. Chang, T.L. Chen, K.D. Huang, S.H. Chien, K.C. Hung, ' Fabrication of highly efficient flexible dye-sensitized solar cells', Journal of Alloys and Compounds xxx (2010) xxx–xxx
[103] M. Brinkmann*, and P. Rannou , ' Molecular Weight Dependence of Chain Packing and Semicrystalline Structure in Oriented Films of Regioregular Poly(3-hexylthiophene)Revealed by High-Resolution Transmission Electron Microscopy', Macromolecules 2009, 42, 1125-1130
[104] J.L. Lan *, Y.Y. Wang , C.C. Wan, T.C.Wei , H.P. Feng , C.Peng , H.P.Cheng , Y. H. Chang , W.C. Hsu ' The simple and easy way to manufacture counter electrode for dye-sensitized solar cells', Current Applied Physics 10 (2010) S168–S171
[105] K. S. Lee , H.K. Lee , D. H. Wang , N.G. Park , J. Y. Lee , O.O. Park and J. H. Park*, ' Dye-sensitized solar cells with Pt- and TCO-free counter electrodes', Chem. Commun., 2010, 46, 4505–4507
[106] L.M. Goncalves , V.Z. Bermudez , H.A.Ribeiro , A.M. Mendes, 'Dye-sensitized solar cells: A safe bet for the future', Energy & Environmental Science 2008;1: 655-667
[107] K. S. Lee , J. H. Yun , Y.H. Han , J.H. Yim , N.G. Park , K. Y. Cho*and J. H. Park* ' Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO- and Pt-less counter electrodes ', J. Mater. Chem 2011
[108] P. Wang , S. M.Zakeeruddin, I. Exnar, M. Gratzel, 'High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte', Chemical Communications 2002;2972-2973.
[109] J.Kwon , V. Ganapathy , Y.H.Kim , K.D. Song , H.G. Park , Y. Jun , P. J. Yoo and J. H. Park*,' Nanopatterned conductive polymer films as a Pt, TCO-free counter electrode for low-cost dye-sensitized solar cells ', 2013,Nanoscale
[110] Mohammad Al-Mamun , J.Y. Kim , Y.E. Sung , J.J. Lee , S.R. Kim ' Pt and TCO free hybrid bilayer silver nanowire–graphene counter electrode for dye-sensitized solar cells ', Chemical Physics Letters 561–562 (2013) 115–119
[111] S. W. Park , D. S. Hwang , D. Y. Kim and D. Kim*, ' Doubly β-Functionalized Zinc(II) Porphyrin-sensitized TiO2 Solar Cells ' Journal of the Chinese Chemical Society, 2010, 57, 1111-1118
[112] http://catchfrog.myweb.hinet.net/system.html
[113] A. K. K. Kyaw, H. Tantang, T. Wu, L. Ke, C. Peh, Z. H. Huang , X. T. Zeng , H. V. Demir , Q. Zhang , and X. W. Sun , ' Dye-sensitized solar cell with a titanium-oxide- modified carbon nanotube transparent electrode ', Applied Physics Letters 99, 021107 (2011)
[114] G.D.Sharma, R. Kurchania, R. Ball , M. S. Roy and J.A. Mikroyannidis ' Effect of deoxycholic acid on the performance of dye sensitized solar cells based on perylene monoimide derivative as sensitizer using liquid electrolyte ', Carbon 2011;50:3-33
[115] D.W. Zhang , X.D. Li , H.B. Li , S. Chen , Z. Sun , X.J. Yin , S.M. Huang , C. Radloff , N.J. Halas, ' Graphene-based counter electrode for dye-sensitized solar cells ', Carbon 49(2011) 5382 –5388
[116] K. Imoto, K. Takahashi*, T. Yamaguchi ,T. Komur, J.I. Nakamura, K. Murata, ' High-performance carbon counter electrode for dye-sensitized solar cells ', Solar Energy Materials & Solar Cells 79 (2003) 459–469
[117] Y.Jo , J. Y. Cheon , J. Yu , H. Y. Jeong , C.H. Han ,Y. Jun* and S. H. Joo*, ' Highly interconnected ordered mesoporous carbon–carbon nanotube nanocomposites: Pt-free, highly efficient, and durable counter electrodes for dye-sensitized solar cellsw ', Synthetic Metals 2001;121:1225–1226
[118] E. Ramasamy, W. J. Lee , D.Y.Lee, and J.S.Song, ' Nanocarbon counter electrode for dye sensitized solar cells ', Applied Physics Letters 90, 173103 , 2007
[119] P. Brown, K.Takechi , P.V. Kamat, 'Single-Walled Carbon Nanotube Scaffolds for Dye-Sensitized Solar Cells', The Journal of Physical Chemistry C 2008; 112:4776-4782
[120] S.S.Guo , C.Qin, Y.G. Li , Y.Lu , Z.M. Su , W.L. Chen and E.B. Wang, ' A long-term stable Pt counter electrode modified by POM-based multilayer film for high conversion efficiency dye-sensitized solar cells ' Dalton Trans., 2012, 41, 2227–2230
[121] A.Zaban , M. Greenshtein , J. Bisquert, ' Determination of the electron lifetime in nanocrystalline dye solar cells by photovoltage decay measurements,' ChemPhysChem, 4, 859-864 (2003)
[122] S.Ito , H.B. Robin , P. Liska , P.Comte , P. Pechy , M. K. Nazeeruddin , and M. Gr‥atzel , ' Electron-Density and Electron-Lifetime Profile in Nanocrystalline-TiO2 Electrode of Dye-Sensitized Solar Cells Analysed by Voltage Decay and Charge Extraction ', International Scholarly Research Network ISRN Nanotechnology Volume 2011
[123] H. Jeong , Y. Pak , Y. Hwang , H.Song , K. H. Lee , H.C. Ko , and G. Y. Jung , ' Enhancing the Charge Transfer of the Counter Electrode in Dye-Sensitized Solar Cells Using Periodically Aligned Platinum Nanocups ', small 2012, 8, No. 24, 3757–3761
[124] X. L. Zhang , Z. Zhang , D. Chen , P. Bauerle , U. Bache and Y.B. Chenge , ' Sensitization of nickel oxide: improved carrier lifetime and charge collection by tuning nanoscale crystallinity', Chem. Commun., 2012, 48, 9885–9887
[125] H. Vin , 'A new convenient method for the synthesis of poly(styrenesulfonic acid)', Makromolekulare Chemie 1981;182:279-281
[126] W. Sun , T. Peng , Y. Liu , S. Xu , J. Yuan , S. Guo and X.Z. Zhao , ' Hierarchically porous hybrids of polyaniline nanoparticles anchored on reduced graphene oxide sheets as counter electrodes for dye-sensitized solar cells ', J. Mater. Chem. A, 2013, 1, 2762–2768
[127] H.Sun , Y.Luo , Y.Zhang , D.Li , Z.Yu , K.Li , Q. Meng , In Situ Preparation of a Flexible Polyaniline/Carbon Composite Counter Electrode and Its Application in Dye-SensitizedSolar Cells. J. Phys. Chem. C 2010, 114, 11673–11679.
[128] K.C.Huang , J.H. Huang , C.H. Wu , C.Y. Liu , H.W.Chen , C.W. Chu , J.T. Lin, C.L. Lin and K.C.Ho , ' Nanographite/polyaniline composite films as the counter electrodes for dyesensitized solar cells†', J. Mater. Chem., 2011, 21, 10384–10389
[129] 劉耕硯,'可交聯型釕金屬錯合物在染敏化太陽能電池上的合成與應用',台灣大學材料科學與工程研究所 博士論文 2011
[130] 柯志揚,' 可交聯型釕金屬錯合物與其交聯劑在染料敏化太陽能電池之應用',台灣大學高分子科學與工程研究所 碩士論文2010
[131] 曾俊華,' 含不同羧基數釕金屬錯合物染料之性質及光伏效能研究',台灣大學材料科學與工程研究所 碩士論文 2011
[132] I. Sedenkova ,* M.Trchova , J. Stejskal, and J. Bok , ' Polymerization of Aniline in the Solutions of Strong and Weak Acids: The Evolution of Infrared Spectra and Their Interpretation Using Factor Analysis', Applied Spectroscopy Volume 61, Number 11, 2007
[133] B. Lee , D. B. Buchholz and R. P. H. Chang, ' An all carbon counter electrode for dye sensitized solar cells', Energy Environ. Sci., 2012, 5, 6941–6952
[134] 葉珈妏,' 陰離子物理吸附多層奈米碳管在染料敏化太陽能電池光電極之應用 ',台灣大學高分子科學與工程研究所 碩士論文 2012
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58930-
dc.description.abstract本論文主要是以聚苯胺、多層奈米碳管和石墨烯複合薄膜取代白金薄膜作為染料敏化太陽能電池對電極之催化層。首先,以苯胺硫酸鹽酸性溶液作為有效分散劑避免石墨烯與多層奈米碳管彼此堆疊與聚集。再分別利用定電位電化學聚合法與化學氧化/定電位電化學聚合法分別於FTO玻璃與載玻片表面形成複合薄膜。由四點探針與TGA分析結果,添加石墨烯與多層奈米碳管之複合薄膜表面電阻下降與熱重量損失下降量減少,證實利用定電位電化學聚合法與化學氧化/定電位電化學聚合法可成功地製備出PANi/Graphene/MWCNTs複合薄膜。
實驗第一部分:以定電位電化學聚合法於FTO玻璃表面形成PANi薄膜,其光電轉換效率為5.55±0.05 %。當添加石墨烯與多層奈米碳管適當的含量比例(苯胺/石墨烯=1/0.0045;苯胺/多層奈米碳管=1:0.0045)時,光電轉換效率分別提升至7.29±0.08% 與 7.21±0.08% .。以苯胺/石墨烯/多層奈米碳管的重量比例為1/0.0030/0.0045所製備出的PANi/Graphene/MWCNTs複合薄膜,達到最佳的光電轉換效率7.67±0.05%。此外,添加石墨烯與多層奈米碳管可使得短路電流由15.48 mA/cm2提升至18.21 mA/cm2。
實驗第二部分:以化學氧化/定電位電化學聚合法於載玻片表面形成PANi薄膜,其光電轉換效率為0.58±0.02%。當添加石墨烯與多層奈米碳管適當的含量比例(苯胺/石墨烯=1/0.0060;苯胺/多層奈米碳管=1:0.0060)時,光電轉換效率分別提升至2.04±0.08% 與 2.03±0.07%。以苯胺/石墨烯/多層奈米碳管的重量比例為1/0.0045/0.0060所製備出的PANi/Graphene/MWCNTs複合薄膜,達到最佳的光電轉換效率3.58±0.06% 。此外,添加石墨烯與多層奈米碳管可使得短路電流由3.64±0.06mA/cm2提升至9.38±0.07 mA/cm2.
由循環伏安法分析結果可得知,PANi/Graphene/MWCNTs複合薄膜相較於PANi、PANi/Graphene與PANi/MWCNTs而言,I3-於其表面還原成
I-之催化活性能力較佳,主要原因歸因於PANi/Graphene/MWCNTs複合薄導電性較佳而提升表面還原電流密度,使得短路電流、光電轉換效率與電量收集效率提升。另一方面,光電轉換分析中,以PANi/Graphene/MWCNTs複合薄膜當作對電極,其開路電壓值較大,主要與循環伏安法所測得的還原電位較高有關。
zh_TW
dc.description.abstractThis paper is mainly concerned with the replacement of platinum with polyaniline (PANi), graphene and multi-walled carbon nanotube (MWCNT) composite films used as a catalysis layer in counter electrode of dye-sensitized solar cells (DSSC). First, we used aniline sulfate solution as an efficient dispersing agent to debundle MWCNTs and to avoid graphenes aggregated. The composite films were grown on fluorine-doped tin oxide (FTO) and glass substrates by using electro-chemical deposition and chemical/electro-chemical deposition respectively. From the results of four-point probe and thermo-gravimetric analysis, the surface resistance and the weight loss percentage of the films were decreased with the addition of graphenes and MWCNTs. Accordingly, the PANi/Graphene/MWCNTs composite films were successfully fabricated by electro-chemical deposition and chemical/electro-chemical deposition.
In the first part of this research, the PANi film were grown on the FTO-coated glass as counter electrodes of DSSCs by using electro-chemical deposition. The power conversion efficiency of as-fabricated DSSC was 5.55±0.05 % .When adding the proper amount of graphenes and MWCNTs (aniline/graphene=1/0.0045;aniline/MWCNTs=1/0.0045 ) , the power conversion efficiency were raised to 7.29±0.08% and 7.21±0.08% . The highest power conversion efficiency was 7.67±0.05%, when the weight ratio of aniline/graphene/MWCNT was 1/0.0030/0.0045. In addition , the addition of graphene and MWCNTs could enhance the Jsc of DSSC from 15.48 to 18.21 mA/cm2.
In the second part of this research, the PANi film was grown on the glass slide as a counter electrode of DSSC by using chemical/electro-chemical deposition. The highest power conversion efficiency of as-fabricated DSSC was 0.58±0.02%. When adding the proper amount of graphenes and MWCNTs (aniline/graphene=1/0.0060;aniline/graphene=1/0.0060) , the power conversion efficiency were raised to 2.04±0.08% and 2.03±0.07%. The highest power conversion efficiency was 3.58±0.06%, when the weight ratio of aniline/graphene/MWCNTs was 1/0.0045/0.0060. In addition , the addition of graphene and MWCNTs could enhance the Jsc of DSSC from 3.64±0.06 to 9.38±0.07 mA/cm2.
From the result of cyclic voltammetry (CV) analysis, the PANi/Graphene, PANi/MWCNTs, and PANi/Graphene/MWCNTs composite films compared to neat PANi have higher catalysis of converting tri-iodide (I3-) to iodide (I-) due to their higher conductivity and higher redox current density. The increase of redox current density resulted in higher Jsc, higher power conversion efficiency, and better charge collection efficiency of DSSCs. In addition, the open-circuit voltage of DSSCs was higher with the PANi/Graphene/MWCNTs counter electrode because of the higher reduction potential for I-/ I3- redox couples.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:39:24Z (GMT). No. of bitstreams: 1
ntu-102-R00549001-1.pdf: 12807404 bytes, checksum: 30b7a7c5a8ba1ae524e124e373f99d7b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents第一章 緒論 1
1-1 前言 1
1-2 染料敏化太陽能電池的發展 3
1-3 染料敏化太陽能電池產業未來研發方向 4
1-4 文獻回顧與探討 4
1-4.1 染料敏化太陽能電池簡介與工作原理 4
1-4.1.1 染料敏化太陽能電池的工作原理 4
1-4.1.2 透明導電基板 7
1-4.1.3 染料 8
1-4.1.4 工作電極 10
1-4.1.5 電解質 14
1-4.1.6 對電極 16
1-4.2 染料敏化太陽能電池的量測技術與輸出特性 17
1-4.2.1 太陽光譜與光源模擬器 17
1-4.2.2 光電流-電壓特徵曲線 19
1-4.2.3 交流阻抗分析 22
1-4.2.4 IMPS與IMVS之量測 24
1-4.2.5電壓下降與電量收集法 26
1-4.3 導電高分子簡介 27
1-4.3.1 導電高分子種類及導電機制 28
1-4.3.2 導電高分子-聚苯胺 29
1-4.4 聚苯胺的合成 31
1-4.5 層層自组裝薄膜 33
1-4.6 奈米碳管簡介 35
1-4.7石墨烯簡介 36
1-4.7.1石墨烯的發現 36
1-4.6.2石墨烯的導電性質 38
1-5 研究目的 40
第二章 實驗設備與方法 42
2-1 藥品器材 42
2-2 儀器設備 43
2-3 染料敏化太陽能電池的製作 44
2-3.1 染料溶液的製備 44
2-3.2 液態電解質的製備 44
2-3.3 二氧化鈦鍍液的製備 45
2-3.4二氧化鈦工作電極的製備 45
2-3.5聚苯胺/石墨烯/多層奈米碳管複合薄膜對電極的製備 46
2-3.5.1 配製苯胺硫酸鹽溶液 46
2-3.5.2以化學氧化聚合法於載玻片表面形成聚苯胺薄膜 46
2-3.5.3添加不同重量比例之石墨烯與多層奈米碳管 46
2-3.5.4利用定電位電化學聚合法製備出複合薄膜對電極 47
2-3.6 元件組合 49
2-4 聚苯胺/石墨烯/奈米碳管複合薄膜的性質測試與試片製備 49
2-4.1 FT/IR分析苯胺硫酸鹽粉末化學鍵結 49
2-4.2 ATR-FTIR分析薄膜表面化學鍵結 49
2-4.3 複合薄膜每單位面積重量測試 49
2-4.4以四點探針量測複合薄膜表面之電阻 50
2-4.5 TGA量測試片熱重量損失 50
2-4.6 SEM觀測薄膜表面型態 50
2-4.7 循環伏安法分析薄膜催化活性 50
2-5 太陽能電池的光電化學測試 50
2-5.1 光電流-電壓特徵曲線 51
2-5.2 交流阻抗分析 51
2-5.3 IMVS與IMPS之量測 51
2-5.4 電壓衰退及電量分析實驗之量測 52
第三章 結果與討論 53
3-1 採用定電位電化學聚合法於導電玻璃表面形成複合薄膜 53
3-1.1 複合薄膜性質鑑定 53
3-1.1.1苯胺硫酸鹽粉末化學鍵結分析 53
3-1.1.2薄膜表面鍵結變化 53
3-1.1.3複合薄膜每單位面積重量隨定電位電量增加之變化 55
3-1.1.4複合薄膜表面電阻率隨定電位電量增加之變化 57
3-1.1.5試片熱重量損失變化 60
3-1.1.6 SEM觀測薄膜表面型態與EDX分析薄膜表面元素 65
3-1.2 複合薄膜對電極元件分析 69
3-1.2.1 光電轉換效率分析 69
3-1.2.2 交流阻抗分析 77
3-1.2.3 IMPS/IMVS分析 101
3-1.5.4 電壓衰退及電量累積分析 112
3-1.3複合薄膜催化活性分析 124
3-2採用化學氧化/定電位電化學聚合法於載玻片表面形成複合薄膜 133
3-2.1複合薄膜性質鑑定 133
3-2.1.1薄膜表面鍵結變化 133
3-2.1.2複合薄膜每單位面積重量隨定電位電量增加之變化 134
3-2.1.3複合薄膜表面電阻率隨定電量增加之變化 138
3.2.1.4試片熱重量損失變化 140
3-2.1.5 SEM觀測薄膜表面型態與EDX分析薄膜表面元素 145
3-2.2複合薄膜對電極元件分析 149
3-2.2.1 光電轉換效率分析 149
3-2.2.2 交流阻抗分析 157
3-2.2.3 IMPS/IMVS分析 181
3-2.2.4 電壓衰退及電量累積分析 192
3-2.3複合薄膜催化活性分析 204
第四章 結論 214
第五章 參考文獻 216
附錄 230
dc.language.isozh-TW
dc.subject石墨烯zh_TW
dc.subject染料敏化太陽能電池zh_TW
dc.subject多層奈米碳管zh_TW
dc.subject對電極zh_TW
dc.subject聚苯胺zh_TW
dc.subjectdye-sensitized solar cellsen
dc.subjectmulti-walled carbon nanotubeen
dc.subjectgrapheneen
dc.subjectcounter electrodesen
dc.subjectpolyanilineen
dc.title利用聚苯胺/多層奈米碳管/石墨烯複合材料製作染料敏化太陽能電池對電極之製程及性能研究zh_TW
dc.titleProcessing and Performance of Polyaniline/Multi-walled Carbon Nanotubes / Graphene Composites as Counter Electrodes for Dye-sensitized Solar Cellsen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee廖文彬(Wen-Bin Liau),劉貴生(Guey-Sheng Liou),童世煌(Shih-Huang Tung)
dc.subject.keyword對電極,聚苯胺,石墨烯,多層奈米碳管,染料敏化太陽能電池,zh_TW
dc.subject.keywordcounter electrodes,polyaniline,graphene,multi-walled carbon nanotube,dye-sensitized solar cells,en
dc.relation.page235
dc.rights.note有償授權
dc.date.accepted2013-10-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
Appears in Collections:高分子科學與工程學研究所

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
12.51 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved