Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58928
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳凱儀
dc.contributor.authorShin-Ruei Leeen
dc.contributor.author李欣叡zh_TW
dc.date.accessioned2021-06-16T08:39:17Z-
dc.date.available2013-11-05
dc.date.copyright2013-11-05
dc.date.issued2013
dc.date.submitted2013-10-09
dc.identifier.citationAsoro FG, Newell MA, Beavis WD, Scott PS, Jannink JL (2011) Accuracy and training population design for genomic selection on quantitative traits in elite north American oats. Plant Genome 4:132-144
Bai XF, Luo LJ, Yan WH, Kovi MR, Zhan W, Xing YZ (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genetics 11:16
Bernardo R (2008) Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Science 48:1649-1664
Bernardo R, Yu JM (2007) Prospects for genomewide selection for quantitative traits in maize. Crop Science 47:1082-1090
Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889-890
Crossa J, de los Campos G, Perez P, Gianola D, Burgueno J, Araus JL, Makumbi D, Singh RP, Dreisigacker S, Yan JB, Arief V, Banziger M, Braun HJ (2010) Prediction of genetic values of quantitative traits in plant breeding using pedigree and molecular markers. Genetics 186:713-724
de Los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP (2012) Whole genome regression and prediction methods applied to plant and animal breeding. Genetics doi:10.1534/genetics.112.143313
de Oliveira EJ, de Resende MDV, Santos VD, Ferreira CF, Oliveira GAF, da Silva MS, de Oliveira LA, Aguilar-Vildoso CI (2012) Genome-wide selection in cassava. Euphytica 187:263-276
Dekkers JCM (2007) Prediction of response to marker-assisted and genomic selection using selection index theory. Journal of Animal Breeding and Genetics 124:331-341
Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package RR-BLUP. Plant Genome 4:250-255
Ge XJ, Xing YZ, Xu CG, He YQ (2005) QTL analysis of cooked rice grain elongation, volume expansion, and water absorption using a recombinant inbred population. Plant Breeding 124:121-126
Gianola D, Fernando RL, Stella A (2006) Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173:1761-1776
Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology 57:461-485
Hartigan JA (1975) Clustering algorithms. Wiley, New York.
Hayes BJ, Visscherp M, Goddardm E (2009) Increased accuracy of artificial selection by using the realized relationship matrix. Genetics Research 91:47-60
Heffner EL, Jannink JL, Iwata H, Souza E, Sorrells ME (2011a) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Science 51:2597-2606
Heffner EL, Jannink JL, Sorrells ME (2011b) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75
Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: Gain per unit time and cost. Crop Science 50:1681-1690
Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Science 49:1-12
Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: A comparison of models. Crop Science 52:146-160
Iwata H, Jannink JL (2011) Accuracy of genomic selection prediction in barley breeding programs: A simulation study based on the real single nucleotide polymorphism data of barley breeding lines. Crop Science 51:1915-1927
Jannink JL, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: From theory to practice. Briefings in Functional Genomics 9:166-177
Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743-756
Lorenz AJ, Chao SM, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL (2011) Genomic selection in plant breeding: Knowledge and prospects. Advances in Agronomy 110:77-123
Lorenz AJ, Smith KP, Jannink JL (2012) Potential and optimization of genomic selection for fusarium head blight resistance in six-row barley. Crop Science 52:1609-1621
Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theoretical and Applied Genetics 120:151-161
Maenhout S, De Baets B, Haesaert G (2010) Graph-based data selection for the construction of genomic prediction models. Genetics 185:1463-1475
Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829
Nakaya A, Isobe SN (2012) Will genomic selection be a practical method for plant breeding? Annals of Botany 110:1303-1316
Perez P, de los Campos G, Crossa J, Gianola D (2010) Genomic-enabled prediction based on molecular markers and pedigree using the bayesian linear regression package in R. Plant Genome 3:106-116
Park T, Casella G (2008) The bayesian lasso. Journal of the American Statistical Association 103:681-686
Qu YY, Mu P, Zhang HL, Chen CY, Gao YM, Tian YX, Wen F, Li ZC (2008) Mapping QTLs of root morphological traits at different growth stages in rice. Genetica 133:187-200
R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
Rincent R, Laloe D, Nicolas S, Altmann T, Brunel D, Revilla P, Rodriguez VM, Moreno-Gonzalez J, Melchinger A, Bauer E, Schoen CC, Meyer N, Giauffret C, Bauland C, Jamin P, Laborde J, Monod H, Flament P, Charcosset A, Moreau L (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: Comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192:715-728
Solberg TR, Sonesson AK, Woolliams JA, Meuwissen THE (2008) Genomic selection using different marker types and densities. Journal of Animal Science 86:2447-2454
Wong CK, Bernardo R (2008) Genomewide selection in oil palm: Increasing selection gain per unit time and cost with small populations. Theoretical and Applied Genetics 116:815-824
Zhang ZH, Qu XS, Wan S, Chen LH, Zhu YG (2005) Comparison of QTL controlling seedling vigour under different temperature conditions using recombinant inbred lines in rice (Oryza sativa). Annals of Botany 95:423-429
Zhao YS, Gowda M, Liu WX, Wurschum T, Maurer HP, Longin FH, Ranc N, Reif J (2012a) Accuracy of genomic selection in european maize elite breeding populations. Theoretical and Applied Genetics 124:769-776
Zhao YS, Gowda M, Longin FH, Wurschum T, Ranc N, Reif JC (2012b) Impact of selective genotyping in the training population on accuracy and bias of genomic selection. Theoretical and Applied Genetics 125:707-713
Zhong SQ, Dekkers JCM, Fernando RL, Jannink JL (2009) Factors affecting accuracy from genomic selection in populations derived from multiple inbred lines: A barley case study. Genetics 182:355-364
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58928-
dc.description.abstract基因組選種 (genomic selection) 是新興的分子標記輔助選種策略,透過由訓練族群所建構的統計預測模型,直接以個體大量的分子標記基因型資料計算各個個體的個體育種價估計值,並以此為依據選拔個體。已知預測模型的統計方法、分子標記數量以及訓練族群大小,皆會影響個體育種價估計值的預測準確度。本研究挑選計算能力優異的RR-BLUP、BL與RKHS三種統計方法建構預測模型,並依據有效基因座數目、訓練族群大小、分子標記數量、和性狀狹義遺傳率等四種參數的不同設定,模擬192種不同水稻重組自交系訓練族群的基因型與外表型的資料。然後計算192種組合模擬資料之三種統計模型的預測準確度,評估與比較各種參數設定對預測準確度的影響,以決定投入訓練族群之試驗規模。評選方法是依據不同的狹義遺傳率,先選取基因組選種之預測準確度可高於外表型選種的所有組合,再由這些組合中選出最小訓練族群大小且最少分子標記數量的組合。zh_TW
dc.description.abstractGenomic Selection is a new strategy of marker-assisted selection that selects superior individuals based on their genomic estimated breeding values. The genomic estimated breeding values are calculated solely using individual genotypes of substantial markers through a statistical prediction model built by data collecting from a training population. Prediction accuracy of genomic estimated breeding values can be affected by several factors, including statistical methods of the prediction model, number of markers genotyped, and size of the training population. In the current study, three statistical methods – RR-BLUP, BL, and RKHS – all of which have great computing ability were chosen to establish the prediction model. 192 different sets of genotypic and phenotypic data of rice recombinant inbred populations were simulated in silico as training populations among which effective QTL numbers, population size, marker numbers, and narrow-sense heritability were assigned at different levels. In order to determine the most effective inputs of a training population for given narrow-sense heritability of a characteristics, prediction accuracy of genomic estimated breeding values was calculated and compared for all simulated training populations using the three statistical methods. At each different level of narrow-sense heritability, sets of training populations showing that genomic selection is more effective than phenotypic selection were identified, and then the set with lowest marker numbers and smallest size of the training population were selected.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:39:17Z (GMT). No. of bitstreams: 1
ntu-102-R99621110-1.pdf: 1699051 bytes, checksum: 27a4f2b7a0a90e3757b95b5562db36a6 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
表目錄 vii
圖目錄 viii
中英對照表 ix
一、 前言: 1
1.1 簡介基因組選種 1
1.2 影響選拔效率因子 3
1.3 基因組選種研究近況 4
二、研究目的: 9
三、材料與方法: 10
3.1 試驗資料的模擬 10
3.1.1 基因型資料模擬 10
3.1.2 外表型資料模擬 11
3.2 建立預測模型 12
3.2.1 RR-BLUP 12
3.2.2 Bayesian LASSO 13
3.2.3 RKHS 13
3.3 預測準確度與交互驗證法 14
3.4 變方分析與特奇顯著差異法 15
四、結果: 16
4.1 外表型模擬結果 16
4.2 三種統計模型比較 16
4.3 不同有效基因座數目結果比較 16
4.4 不同遺傳率結果比較 17
4.5 不同訓練族群大小結果比較 17
4.6 不同分子標記數量結果比較 17
4.7 試驗規模的選擇 17
五、討論: 19
5.1 目標性狀的遺傳率 19
5.2 控制目標性狀的有效基因座個數 19
5.3 建構模型的統計方法 20
5.4 分子標記的數量 21
5.5 訓練族群的大小 22
六、結論 24
七、引用文獻: 45
附錄一、資料模擬及統計預測程式 48

表目錄
表一、基因組選種實證研究整理 25
表一、基因組選種實證研究整理 (續) 26
表一、基因組選種實證研究整理 (續) 27
表二、外表型選種之預測準確度結果 28
表三、基因組選種之RR-BLUP模型預測準確度結果 29
表四、基因組選種BL模型之預測準確度結果 30
表五、基因組選種RKHS模型之預測準確度結果 31
表六、分子標記數目變方分析之機率值,與特奇顯著差異之組別,以BL模型結果計算。 32

圖目錄
圖一、雙指數分佈圖 34
圖二、在不同的有效基因座數目下,100個QTL的遺傳變方大小。 35
圖三、在三種的有效基因座數目設定下,100個QTL效應抽樣結果。 36
圖四、模擬外表型與台南場水稻族群外表型分布圖。 37
圖五、三種統計模型之預測準確度分布圖。為492個分子標記、450個訓練族群大小、5個有效基因座、遺傳率0.3設定狀態下的預測結果。 38
圖六、三種有效基因座數目之預測準確度分布圖。為492個分子標記、225個訓練族群大小、遺傳率0.3設定狀態下的BL模型預測結果。 39
圖七、四種遺傳率下之預測準確度分布圖。為492個分子標記、338個訓練族群大小、10個有效基因座的BL模型預測結果。 40
圖八、四種族群大小之預測準確度分布圖。為252個分子標記、1 0個有效基因座、遺傳率0.3設定狀態下的BL模型預測結果。 41
圖九、四種分子標記數目之預測準確度分布圖。為338個訓練族群大小、3 0個有效基因座、遺傳率0.3設定狀態下的BL模型預測結果。 42
圖十、四種族群大小之預測準確度分布圖。為252個分子標記、1 0個有效基因座、遺傳率0.1設定狀態下的BL模型預測結果。 43
圖十一、四種族群大小之預測準確度分布圖。為252個分子標記、1 0個有效基因座、遺傳率0.5設定狀態下的BL模型預測結果。 44
圖十二、四種族群大小之預測準確度分布圖。為492個分子標記、1 0個有效基因座、遺傳率0.7設定狀態下的BL模型預測結果。 45
dc.language.isozh-TW
dc.title水稻基因組選種之模擬研究 ── 訓練族群預測模型之建立與最低投入試驗規模之確立zh_TW
dc.titleSimulation Study of Genomic Selection in Rice: Establishment of Prediction Model and Identification of Minimal Experimental Inputs for the Training Populationen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.coadvisor蔡政安
dc.contributor.oralexamcommittee胡凱康,董致韡
dc.subject.keyword基因組選種,預測模型,規模選定,zh_TW
dc.subject.keywordGenomic selection,Statistical model of prediction,Decision of experimental inputs,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2013-10-09
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
1.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved