Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58906
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孟子青
dc.contributor.authorFan-Yu Changen
dc.contributor.author張汎瑜zh_TW
dc.date.accessioned2021-06-16T08:37:59Z-
dc.date.available2016-12-31
dc.date.copyright2013-10-23
dc.date.issued2013
dc.date.submitted2013-10-16
dc.identifier.citation1.Fishel, R.S., Are, C. & Barbul, A. Vessel injury and capillary leak. Critical care medicine 31, S502-511 (2003).
2.Kinlay, S., Libby, P. & Ganz, P. Endothelial function and coronary artery disease. Current Opinion in Lipidology 12, 383-389 (2001).
3.Sanz, J. & Fayad, Z.A. Imaging of atherosclerotic cardiovascular disease. Nature 451, 953-957 (2008).
4.Martin, T.A. & Jiang, W.G. Loss of tight junction barrier function and its role in cancer metastasis. Biochimica et biophysica acta 1788, 872-891 (2009).
5.Ten, V.S. & Pinsky, D.J. Endothelial response to hypoxia: physiologic adaptation and pathologic dysfunction. Current opinion in critical care 8, 242-250 (2002).
6.Faller, D.V. Endothelial cell responses to hypoxic stress. Clinical and experimental pharmacology & physiology 26, 74-84 (1999).
7.Ogawa, S. et al. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. The Journal of clinical investigation 85, 1090-1098 (1990).
8.Sluimer, J.C. & Daemen, M.J. Novel concepts in atherogenesis: angiogenesis and hypoxia in atherosclerosis. The Journal of pathology 218, 7-29 (2009).
9.Savransky, V. et al. Chronic intermittent hypoxia induces atherosclerosis. American journal of respiratory and critical care medicine 175, 1290-1297 (2007).
10.Nakano, D. et al. Chronic hypoxia accelerates the progression of atherosclerosis in apolipoprotein E-knockout mice. Hypertension research : official journal of the Japanese Society of Hypertension 28, 837-845 (2005).
11.Kayyali, U.S. et al. Cytoskeletal changes in hypoxic pulmonary endothelial cells are dependent on MAPK-activated protein kinase MK2. J Biol Chem 277, 42596-42602 (2002).
12.Schoch, H.J., Fischer, S. & Marti, H.H. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain : a journal of neurology 125, 2549-2557 (2002).
13.Wood, J.G., Johnson, J.S., Mattioli, L.F. & Gonzalez, N.C. Systemic hypoxia increases leukocyte emigration and vascular permeability in conscious rats. Journal of applied physiology (Bethesda, Md. : 1985) 89, 1561-1568 (2000).
14.Kolluru, G.K. et al. Nitric oxide/cGMP protects endothelial cells from hypoxia-mediated leakiness. European journal of cell biology 87, 147-161 (2008).
15.Dudzinski, D.M. & Michel, T. Life history of eNOS: partners and pathways. Cardiovascular research 75, 247-260 (2007).
16.Zweier, J.L., Wang, P., Samouilov, A. & Kuppusamy, P. Enzyme-independent formation of nitric oxide in biological tissues. Nat Med 1, 804-809 (1995).
17.Dudzinski, D.M., Igarashi, J., Greif, D. & Michel, T. The regulation and pharmacology of endothelial nitric oxide synthase. Annual review of pharmacology and toxicology 46, 235-276 (2006).
18.Naseem, K.M. The role of nitric oxide in cardiovascular diseases. Molecular Aspects of Medicine 26, 33-65 (2005).
19.Ostergaard, L. et al. Diminished NO release in chronic hypoxic human endothelial cells. Am J Physiol Heart Circ Physiol 293, H2894-2903 (2007).
20.Baldwin, A.L., Thurston, G. & al Naemi, H. Inhibition of nitric oxide synthesis increases venular permeability and alters endothelial actin cytoskeleton. Am J Physiol 274, H1776-1784 (1998).
21.Thomas, D.D., Liu, X., Kantrow, S.P. & Lancaster, J.R. The biological lifetime of nitric oxide: Implications for the perivascular dynamics of NO and O2. Proceedings of the National Academy of Sciences 98, 355-360 (2001).
22.Benjamin, N. et al. Stomach NO synthesis. Nature 368, 502 (1994).
23.Cosby, K. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9, 1498-1505 (2003).
24.Shiva, S. et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ Res 100, 654-661 (2007).
25.Zhang, Z. et al. Human xanthine oxidase converts nitrite ions into nitric oxide (NO). Biochemical Society transactions 25, 524S (1997).
26.Li, H., Kundu, T.K. & Zweier, J.L. Characterization of the magnitude and mechanism of aldehyde oxidase-mediated nitric oxide production from nitrite. J Biol Chem 284, 33850-33858 (2009).
27.Mikula, I., Durocher, S., Martasek, P., Mutus, B. & Slama-Schwok, A. Isoform-specific differences in the nitrite reductase activity of nitric oxide synthases under hypoxia. The Biochemical journal 418, 673-682 (2009).
28.Basu, S. et al. Nitrite reductase activity of cytochrome c. J Biol Chem 283, 32590-32597 (2008).
29.Poyton, R.O., Ball, K.A. & Castello, P.R. Mitochondrial generation of free radicals and hypoxic signaling. Trends in endocrinology and metabolism: TEM 20, 332-340 (2009).
30.Carlsson, S., Wiklund, N.P., Engstrand, L., Weitzberg, E. & Lundberg, J.O. Effects of pH, nitrite, and ascorbic acid on nonenzymatic nitric oxide generation and bacterial growth in urine. Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society 5, 580-586 (2001).
31.Peri, L. et al. Apples increase nitric oxide production by human saliva at the acidic pH of the stomach: a new biological function for polyphenols with a catechol group? Free radical biology & medicine 39, 668-681 (2005).
32.Lundberg, J.O., Weitzberg, E. & Gladwin, M.T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7, 156-167 (2008).
33.Duranski, M.R. et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. The Journal of clinical investigation 115, 1232-1240 (2005).
34.Kumar, D. et al. Chronic sodium nitrite therapy augments ischemia-induced angiogenesis and arteriogenesis. Proceedings of the National Academy of Sciences 105, 7540-7545 (2008).
35.Lai, Y.C. et al. Nitrite-mediated S-nitrosylation of caspase-3 prevents hypoxia-induced endothelial barrier dysfunction. Circ Res 109, 1375-1386 (2011).
36.Sun, J. & Murphy, E. Protein S-nitrosylation and cardioprotection. Circ Res 106, 285-296 (2010).
37.Maejima, Y., Adachi, S., Morikawa, K., Ito, H. & Isobe, M. Nitric oxide inhibits myocardial apoptosis by preventing caspase-3 activity via S-nitrosylation. Journal of molecular and cellular cardiology 38, 163-174 (2005).
38.Atar, S. et al. Atorvastatin-induced cardioprotection is mediated by increasing inducible nitric oxide synthase and consequent S-nitrosylation of cyclooxygenase-2. Am J Physiol Heart Circ Physiol 290, H1960-1968 (2006).
39.Lima, B., Forrester, M.T., Hess, D.T. & Stamler, J.S. S-nitrosylation in cardiovascular signaling. Circ Res 106, 633-646 (2010).
40.Selemidis, S., Dusting, G.J., Peshavariya, H., Kemp-Harper, B.K. & Drummond, G.R. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells. Cardiovascular research 75, 349-358 (2007).
41.Tao, L. et al. Cardioprotective effects of thioredoxin in myocardial ischemia and reperfusion: role of S-nitrosation [corrected]. Proceedings of the National Academy of Sciences of the United States of America 101, 11471-11476 (2004).
42.Wang, G., Moniri, N.H., Ozawa, K., Stamler, J.S. & Daaka, Y. Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proceedings of the National Academy of Sciences of the United States of America 103, 1295-1300 (2006).
43.Matsushita, K. et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115, 139-150 (2003).
44.Ozawa, K. et al. S-Nitrosylation of @b-Arrestin Regulates @b-Adrenergic Receptor Trafficking. Mol Cell 31, 11-11 (2008).
45.Hoffmann, J., Haendeler, J., Zeiher, A.M. & Dimmeler, S. TNFalpha and oxLDL reduce protein S-nitrosylation in endothelial cells. J Biol Chem 276, 41383-41387 (2001).
46.Kim, Y.M., Talanian, R.V. & Billiar, T.R. Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J Biol Chem 272, 31138-31148 (1997).
47.Dejana, E., Tournier-Lasserve, E. & Weinstein, B.M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Developmental cell 16, 209-221 (2009).
48.Aoyama, K. et al. Cleavage of Integrin by μ-Calpain during Hypoxia in Human Endometrial Cells. American Journal of Reproductive Immunology 52, 362-369 (2004).
49.Nagahara, N. Catalytic site cysteines of thiol enzyme: sulfurtransferases. Journal of amino acids 2011, 709404 (2011).
50.Mashima, T., Naito, M. & Tsuruo, T. Caspase-mediated cleavage of cytoskeletal actin plays a positive role in the process of morphological apoptosis. Oncogene 18, 2423-2430 (1999).
51.Bannerman, D.D., Sathyamoorthy, M. & Goldblum, S.E. Bacterial lipopolysaccharide disrupts endothelial monolayer integrity and survival signaling events through caspase cleavage of adherens junction proteins. J Biol Chem 273, 35371-35380 (1998).
52.Fischer, U., Janicke, R.U. & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell death and differentiation 10, 76-100 (2003).
53.Hoang, M.V., Smith, L.E. & Senger, D.R. Calpain inhibitors reduce retinal hypoxia in ischemic retinopathy by improving neovascular architecture and functional perfusion. Biochimica et biophysica acta 1812, 549-557 (2011).
54.Gaston, B.M., Carver, J., Doctor, A. & Palmer, L.A. S-nitrosylation signaling in cell biology. Molecular interventions 3, 253-263 (2003).
55.Derakhshan, B., Hao, G. & Gross, S.S. Balancing reactivity against selectivity: the evolution of protein S-nitrosylation as an effector of cell signaling by nitric oxide. Cardiovascular research 75, 210-219 (2007).
56.Hess, D.T., Matsumoto, A., Kim, S.O., Marshall, H.E. & Stamler, J.S. Protein S-nitrosylation: purview and parameters. Nature reviews. Molecular cell biology 6, 150-166 (2005).
57.Haendeler, J. et al. Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nature cell biology 4, 743-749 (2002).
58.Lander, H.M. et al. A molecular redox switch on p21(ras). Structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272, 4323-4326 (1997).
59.Li, S. & Whorton, A.R. Regulation of protein tyrosine phosphatase 1B in intact cells by S-nitrosothiols. Archives of biochemistry and biophysics 410, 269-279 (2003).
60.Mannick, J.B. et al. Fas-induced caspase denitrosylation. Science 284, 651-654 (1999).
61.Mannick, J.B. et al. S-Nitrosylation of mitochondrial caspases. The Journal of cell biology 154, 1111-1116 (2001).
62.Park, H.-S., Huh, S.-H., Kim, M.-S., Lee, S.H. & Choi, E.-J. Nitric oxide negatively regulates c-Jun N-terminal kinase/stress-activated protein kinase by means of S-nitrosylation. Proceedings of the National Academy of Sciences 97, 14382-14387 (2000).
63.Schonhoff, C.M., Daou, M.C., Jones, S.N., Schiffer, C.A. & Ross, A.H. Nitric oxide-mediated inhibition of Hdm2-p53 binding. Biochemistry 41, 13570-13574 (2002).
64.Mannick, J.B. & Schonhoff, C.M. Measurement of protein S-nitrosylation during cell signaling. Methods in enzymology 440, 231-242 (2008).
65.Jaffrey, S.R., Erdjument-Bromage, H., Ferris, C.D., Tempst, P. & Snyder, S.H. Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nature cell biology 3, 193-197 (2001).
66.Wang, X., Kettenhofen, N.J., Shiva, S., Hogg, N. & Gladwin, M.T. Copper dependence of the biotin switch assay: modified assay for measuring cellular and blood nitrosated proteins. Free radical biology & medicine 44, 1362-1372 (2008).
67.Kovacs, I. & Lindermayr, C. Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation. Frontiers in plant science 4, 137 (2013).
68.Rhee, K.Y., Erdjument-Bromage, H., Tempst, P. & Nathan, C.F. S-nitroso proteome of Mycobacterium tuberculosis: Enzymes of intermediary metabolism and antioxidant defense. Proceedings of the National Academy of Sciences of the United States of America 102, 467-472 (2005).
69.Rusckowski, M., Fogarasi, M., Fritz, B. & Hnatowich, D.J. Effect of endogenous biotin on the applications of streptavidin and biotin in mice. Nucl Med Biol 24, 263-268 (1997).
70.Jaffrey, S.R. & Snyder, S.H. The Biotin Switch Method for the Detection of S-Nitrosylated Proteins. Sci. STKE 2001, pl1- (2001).
71.Sangwung, P. et al. Proteomic identification of S-nitrosylated Golgi proteins: new insights into endothelial cell regulation by eNOS-derived NO. PloS one 7, e31564 (2012).
72.Pasquarello, C., Sanchez, J.C., Hochstrasser, D.F. & Corthals, G.L. N-t-butyliodoacetamide and iodoacetanilide: two new cysteine alkylating reagents for relative quantitation of proteins. Rapid communications in mass spectrometry : RCM 18, 117-127 (2004).
73.Hsu, M.F. & Meng, T.C. Enhancement of insulin responsiveness by nitric oxide-mediated inactivation of protein-tyrosine phosphatases. J Biol Chem 285, 7919-7928 (2010).
74.Stamler, J.S., Toone, E.J., Lipton, S.A. & Sucher, N.J. (S)NO Signals: Translocation, Regulation, and a Consensus Motif. Neuron 18, 691-696 (1997).
75.Gordge, M.P., Addis, P., Noronha-Dutra, A.A. & Hothersall, J.S. Cell-mediated biotransformation of S-nitrosoglutathione. Biochemical pharmacology 55, 657-665 (1998).
76.Zeng, H., Spencer, N.Y. & Hogg, N. Metabolism of S-nitrosoglutathione by endothelial cells. Am J Physiol Heart Circ Physiol 281, H432-439 (2001).
77.Zhang, Y. & Hogg, N. The mechanism of transmembrane S-nitrosothiol transport. Proceedings of the National Academy of Sciences of the United States of America 101, 7891-7896 (2004).
78.Satoh, S. et al. Involvement of L-type-like amino acid transporters in S-nitrosocysteine-stimulated noradrenaline release in the rat hippocampus. Journal of neurochemistry 69, 2197-2205 (1997).
79.Li, S. & Whorton, A.R. Identification of stereoselective transporters for S-nitroso-L-cysteine: role of LAT1 and LAT2 in biological activity of S-nitrosothiols. J Biol Chem 280, 20102-20110 (2005).
80.Stenmark, K.R., Fagan, K.A. & Frid, M.G. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res 99, 675-691 (2006).
81.Machha, A. & Schechter, A.N. Dietary nitrite and nitrate: a review of potential mechanisms of cardiovascular benefits. European journal of nutrition 50, 293-303 (2011).
82.Nagahara, N., Matsumura, T., Okamoto, R. & Kajihara, Y. Protein cysteine modifications: (1) medical chemistry for proteomics. Current medicinal chemistry 16, 4419-4444 (2009).
83.Jacob, C., Knight, I. & Winyard, P.G. Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways. Biological chemistry 387, 1385-1397 (2006).
84.Timmerman, I. et al. The tyrosine phosphatase SHP2 regulates recovery of endothelial adherens junctions through control of beta-catenin phosphorylation. Molecular biology of the cell 23, 4212-4225 (2012).
85.Pan, K.-T. et al. (forthcoming). Mass Spectrometry based Quantitative Proteomics for Dissecting Multiplexed Redox Cysteine Modifications in Nitric Oxide-protected Cardiomyocyte under Hypoxia. Antioxidants & Redox Signaling (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58906-
dc.description.abstract當內皮細胞屏障失去功能時會使血管內環境失去平衡,導致許多病理情況發生,例如:微血管滲漏症候群、動脈粥狀硬化、腫瘤轉移等。其中缺氧是造成血管內皮通透性增加的主要原因,加速內皮細胞屏障功能的惡化,不過詳細機制尚未被發現。最近的研究發現一氧化氮可以透過蛋白質半胱胺酸亞硝基化修飾 (cysteine S-nitrosylation) 調控不同訊息路徑,至今有幾百個蛋白質被認為有潛力透過亞硝基化調控,但是詳細生理及病理機制尚未了解。在本篇的研究中主要探討內皮細胞產生的一氧化氮如何調控訊息間的平衡,對於維持內皮細胞屏障功能扮演非常重要的角色。因此,我們建立了一個新穎的偵測方法,利用化學標記並且利用自製特定的抗體偵測,使我們可以由免疫螢光染色看到細胞內經亞硝基化的蛋白質。由此方式偵測可以得知在動脈內皮細胞質中的蛋白質持續被亞硝基化的現象。令人興奮的是在低氧壓力下蛋白質的亞硝基化程度明顯地降低,並且伴隨內皮細胞屏障功能損傷。因此指出有些半胱胺酸水解蛋白酶 (cysteine-protease) 的受質與內皮細胞屏障功能有某種程度上的關聯,而且我們已經確認過caspase-3的去亞硝基化在缺氧導致內皮細胞傷害扮演關鍵角色。重點是當亞硝酸鹽於缺氧情況下加入內皮細胞中,具有生物活性的一氧化氮含量增促加使蛋白質的亞硝基化修飾提高,caspase-3失活同時也抑制內皮細胞屏障功能傷。而在這個過程中需要將亞硝酸鹽經由亞硝酸還原酶轉變成一氧化氮。因此我們的研究顯示亞硝酸鹽如何扮演一個細胞保護的角色對抗缺氧引發內皮細胞屏障的缺失,所以提出亞硝酸鹽的治療在解決缺氧於血管系統中造成的缺失及疾病具有極大的潛力。zh_TW
dc.description.abstractDysfunction of endothelial barrier causes problems in vascular homeostasis, leading to pathological conditions such as capillary leakage syndrome, atherosclerosis, and tumor metastasis. It has known that hypoxia is a main driving force that promotes endothelial permeability and accelerates the progress of barrier dysfunction. However, the precise underlying mechanism of this process remains elusive. Recent studies have suggested that nitric oxide (NO) acts as a modulator of diverse signaling pathways via protein Cys S-nitrosylation. To date hundreds of proteins are considered being potentially S-nitrosylated. However, the spatiotemporal control of S-nitrosylation under physiological and pathological settings is unknown. Here we present a case to demonstrate how endothelial NO regulates signaling homeostasis, which is essential for the maintenance of barrier function. For this, we have developed a novel method using the combination of chemical labeling and subsequent detection by house-made specific antibodies that allows microscopic visualization of S-nitrosylated proteins in cells. The application of this method indicated that cytosolic proteins in aortic endothelia were constitutively S-nitrosylated. Surprisingly, in response to hypoxic stress, protein S-nitrosylaion levels decreased dramatically, concomitant with the onset of endothelial barrier dysfunction. In addition, it suggested that some substrates of Cys-proteases were related to endothelial barrier function, and we have already identified caspase-3 in the denitrosylated form as a key player in hypoxia-induced endothelial injury. Importantly, when nitrite was supplied to endothelia under hypoxia, bioavailable levels of NO were increased, resulting in rebound of protein S-nitrosylation, inactivation of endogenous caspase-3 and inhibition of barrier dysfunction. Furthermore, this process required conversion of nitrite to bioactive nitric oxide in a nitrite reductase-dependent manner. Together, our study demonstrates how nitrite acts as a cytoprotector for endothelia against hypoxia-induced barrier dysfunction. We propose that nitrite treatment may have a great potential in resolving hypoxia-induced disorders and diseases in the vascular system.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:37:59Z (GMT). No. of bitstreams: 1
ntu-102-R00b46004-1.pdf: 5084841 bytes, checksum: 7937b630059869328cd461cabd6bec07 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 vii
第一章緒論 1
1.內皮細胞屏障功能 2
2.一氧化氮(NO)對於內皮細胞功能的調節 5
3.蛋白質亞硝基化修飾調節內皮細胞通透性 7
4.蛋白質亞硝基化的偵測方式 10
5.實驗目的 12
第二章實驗材料與方法 13
1.實驗材料 14
2.實驗方法 16
第三章實驗結果 20
1.IAN置換方法偵測蛋白質亞硝基化流程圖 21
2.不同alkylation reagent - IAM, APIAM的背景訊號很低 23
3.經過sequential遮蔽比單一或IAM及APIAM共同遮蔽的訊號低 24
4.以連續遮蔽條件進行IAN置換方式,並且搭配西方墨點法可以偵測當COS-7加入CSNO時,蛋白質亞硝基化的訊號增加 26
5.以連續遮蔽條件進行IAN置換方式,並且搭配免疫螢光染色可以偵測當COS-7加入CSNO時,蛋白質亞硝基化的訊號增加 26
6.在缺氧環境下培養的BAEC細胞,蛋白質亞硝基化訊號比正常環境下的細胞低,而且訊號會隨時間增加而降低 27
7.亞硝酸鹽可以回復BAEC細胞在缺氧情況下蛋白質亞硝基化降低的情形 28
第四章討論 29
第五章圖表 34
第六章參考文獻 56
dc.language.isozh-TW
dc.subject缺氧zh_TW
dc.subject內皮細胞屏障缺失zh_TW
dc.subject亞硝酸鹽zh_TW
dc.subject一氧化氮zh_TW
dc.subjectendothelial barrier dysfunctionen
dc.subjecthypoxiaen
dc.subjectnitriteen
dc.subjectNOen
dc.title以蛋白質影像化研究探討亞硝酸鹽保護內皮細胞免於缺氧性傷害的機制zh_TW
dc.titleVisualization of protein S-nitrosylation reveals essential roles of nitrite in protecting endothelial signaling homeostasis against hypoxic injuryen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張震東,王寧,陳光超
dc.subject.keyword缺氧,一氧化氮,亞硝酸鹽,內皮細胞屏障缺失,zh_TW
dc.subject.keywordhypoxia,NO,nitrite,endothelial barrier dysfunction,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2013-10-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
4.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved