請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58897完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | |
| dc.contributor.author | Yu-Ting Chen | en |
| dc.contributor.author | 陳昱廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:37:26Z | - |
| dc.date.available | 2019-03-18 | |
| dc.date.copyright | 2014-03-18 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-10-18 | |
| dc.identifier.citation | [1] G.H. Wang, 'Overview of Heat Exchange Devices Used in Oil- Immersed Type Transformers,' Transformer, Vol.38, No.2, pp.39–42, 2001
[2] D.J. Yuan, 'Discussion on the Cooling System Optimized Scheme for Oil-immersed Natural Cooling Transformer,' Hubei Electric Power, Vol.29 Add, 2005 [3] 陳尚發, '採用微動力循環油浸自冷變壓器的建議', Transformer, Vol.43, No.8, pp.22–23, 2006 [4] M. Lee, H.A. Abdullah, Jan C. Jofriet, and D. Patel, 'Temperature distribution in foil winding for ventilated dry-type power transformers,' Electric Power Systems Research, Vol.80, pp.1065–1073, 2010 [5] J. Smolka, D.B. Ingham, L. Elliott, and A.J. Nowak, 'Enhanced numerical model of performance of an encapsulated three-phase transformer in laboratory environment,' Applied Thermal Engineering, Vol.27, pp.156–166, 2007 [6] R. Hosseini, M. Nourolahi, and G.B. Gharehpetian, 'Determination of OD cooling system parameters based on thermal modeling of power transformer winding,' Simulation Modelling Practice and Theory, Vol.16, pp.585–596, 2008 [7] 林盈甫, “油浸式變壓器散熱之研究,” 中原大學機械工程學系, 碩士學位論文, 2010 [8] J. Gastelurrutia, J.C. Ramos, A. Rivas, G.S. Larraona, J. Izagirre, and L.D. Rio, 'Zonal thermal model of distribution transformer cooling,' Applied Thermal Engineering, Vol.31, pp.4024–4035, 2011 [9] M.G. Kim, S.M. Cho, and J.K. Kim, 'Prediction and evaluation of the cooling performance of radiators used in oil-filled power transformer applications with non-direct and direct-oil-forced flow,' Experimental Thermal and Fluid Science, 2012 [10] Y.T. Zhang, 'Analysis of Calculation Theory for Transformer Temperature Rise', TRANSFORMER, Vol.46, No.9, pp.6–10, 2009 [11] O.E. Gouda, G.M. Amer, and W.A.A. Salem, 'Predicting transformer temperature rise and loss of life in the presence of harmonic load currents,' Ain Shams Engineering Journal, Vol.3, pp.113–121, 2012 [12] J. Smolka, “CFD-based 3-D optimization of the mutual coil configuration for the effective cooling of an electrical transformer”, Applied Thermal Engineering, Vol.50, pp.124–133, 2013 [13] D.A. Ball, R.D. Fischer, and D.L. Hodgett, “Design methods for ground-source heat pumps,”ASHRAE Transactions, Vol.89, No.2, pp.416–440, 1983 [14] Y. Gu, D.L. O’neal, 'Development of an equivalent diameter expression for vertical U-tubes used in ground-coupled heat pumps,' ASHRAE Transactions, Vol.104, pp.347–355, 1998 [15] M.L. Allan, 'Materials characterization of superplasticized cement–sand grout,' Cement and Concrete Research, Vol.30, pp.937–942, 2000 [16] 莊迎春, 孫友宏, 謝康和, '直埋閉式地源熱泵回填土性能研究,' 太陽能學報, Vol.25, No.2, pp.216–220, 2004 [17] C. Lee, M. Park,T.B. Nguyen, B. Sohn, J.M. Choi, H. Choi, 'Performance evaluation of closed-loop vertical ground heat exchangers by conducting in-situ thermal response tests,' Renewable Energy, In Press, Corrected Proof. [18] H. Esen, M. Inalli, “In-situ thermal response test for ground source heat pump system in Elazig,Turkey,” Energy and Buildings, Vol.41, pp.395–401, 2009 [19] J. Raymond, R. Therrien, L. Gosselin, “Borehole temperature evolution during thermal response tests,” Geothermics, Vol.40, pp.69–78, 2011 [20] Jalaluddin , A. Miyara, “Thermal performance investigation of several types of vertical ground heat exchangers with different operation mode,” Applied Thermal Engineering, Vol.33–34, pp.167–174, 2012 [21] M. Congedo, G.Colangelo, G.Starace, “CFD simulations of horizontal ground heat exchangers: A comparison among different configuration,” Applied Thermal Engineering, Vol.33–34, pp.24–32, 2012 [22] T. H. Yang, “Installation adapted with temperature equalization system,” European Patent 20070252130, 2011 [23] 江榮城, '發變電工程,' 全華圖書, 修訂版, pp.9-1–9-44, 2009 [24] G. Mihalakakou, M. Santamouris, J.O. Lewis and D. Asimakopoulos, “On the application of the energy balance equation to predict ground temperature profiles,” Solar Energy, Vol.60, pp.181–190, 1997 [25] C. Gauthier, M. Lacroix, H. Bernier, “ Numerical simulation of soil heat exchanger-storage systems for greenhouses,” Sol Energy, Vol.60, No.6, pp.33–46, 1997 [26] L.R., “ Theory of earth heat exchangers for the heat pump,” ASHRAE Transactions, Vol.57, pp.167–188, 1951 [27] Y.A. Cengel, “Heat and mass transfer,” Mc Graw Hill Third Edition, pp.175–176, pp.463–473, 2006 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58897 | - |
| dc.description.abstract | 隨著科技文明的發展,能源議題逐漸受到重視,其中以電能的使用最為廣泛。藉由變壓器使得電力在傳輸的過程中,得以提高傳輸能力、並減少電力損失,但仍有一部分的電力在變壓器的繞組及鐵心轉換成熱能,造成變壓器的升溫,縮短變壓器的壽命、減少變壓器容量。
目前降溫的方法多利用油泵、風機、水冷卻器等,有著耗能、噪音、維修困難等問題,隨著再生能源的興起,淺層溫能之應用被視為能降溫且節能的有效方法,並利用地埋管熱交換器攫取淺層溫能。因此,本研究將針對油浸式變壓器結合淺層溫能冷卻系統做測試,瞭解其冷卻性能。 因變壓器的升溫,造成內部絕緣油產生自然對流,而地埋管熱交換器則以水溶液作為工作流體,流經散熱設備將熱能帶入地埋管與土壤進行熱交換。除了比較油浸自冷(空氣中自然冷卻)與油浸水冷(藉淺層溫能冷卻)之差異,也測試了在不同操作條件下的冷卻情形:改變(1)水路流向,(2)變壓器負載、(3)水路流率等,並以實驗和數學理論模式相互結合。結果顯示以淺層溫能做為變壓器的散熱系統,能夠得到有效的降溫,平均油溫約下降30~40 oC,水路流向對於高溫處的降溫能力也不同,且水流率越快,淺層溫能冷卻容量則越大。而理論與實驗結果也有良好的一致性,可作為選擇變壓器容量之參考,提供未來後續研究之基礎。 | zh_TW |
| dc.description.abstract | With the development of civilization and technology, increasing attention has been given to energy issues, of which the use of electricity is among the most widely discussed. By the use of transformers, transmission capacity can be improved to reduce power loss during the transmission process. Still, some portion of the power is converted into heat in the transformer windings and core, causing temperature increase of the transformer, shortening the life span of the transformer, and reducing the transformer capacity.
Current cooling methods include the use of pumps, fans, water coolers, etc. However, they come with problems like high power consumption, noise, and maintenance difficulties. Thus, the application of shallow geothermal energy is considered to be an energy efficient cooling method. Moreover, the energy itself can be captured using the borehole heat exchanger. This study focuses on the test results of the oil-immersed transformer cooling system combined with shallow geothermal energy in order to understand its cooling performance. The temperature rise of the transformer causes internal insulating oil to circulate by natural convection. With water as working fluid, borehole heat exchanger brings the heat from the cooling equipment into the borehole and finally conducts heat transfer with the soil. Besides the comparison between ONAN Cooling (air cooling) and ONWF Cooling (shallow geothermal energy cooling), we tested the cooling system under different operating conditions. We manipulated (1) the direction of water flow, (2) load of the transformer, and (3) the water flow rate, and matched the results of the experiments and the mathematical theoretical model. The results showed that the cooling system with shallow geothermal energy effectively cooled down the transformer, with a drop in average oil temperature of about 30~40oC. The cooling performance also varied for different directions of water flow to cool down high temperatures. Moreover, the higher the water flow rate, the greater the cooling capacity. The theory and results of the experiment are in good consistency. Thus, this study may be used as a reference for selecting proper transformer capacity as well as providing a basis for follow-up studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:37:26Z (GMT). No. of bitstreams: 1 ntu-102-R00522301-1.pdf: 3140280 bytes, checksum: 85e7637df71031a908a907602e16c5ea (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 符號說明 XII 第一章 緒論 1 1-1前言 1 1-2文獻回顧 3 1-2.1變壓器散熱 3 1-2.2淺層溫能 4 1-3研究動機與目的 6 第二章 基礎理論 12 2-1變壓器基礎原理 12 2-1.1變壓器之損失 12 2-1.2變壓器之效率 14 2-1.3變壓器升溫原理 14 2-2土壤基礎熱傳理論 15 2-2.1熱響應測試 15 2-2.2線熱源理論 17 2-3熱阻定義及熱傳率 18 第三章 研究及實驗方法 21 3-1 變壓器外箱之熱傳模式 21 3-1.1變壓器散熱設備之結構 21 3-1.2散熱設備數學模型理論 22 3-1.3冷卻容量之計算 27 3-2 系統簡介 28 3-3 實驗設備及量測儀器 29 3-3.1設備簡介 29 3-3.2溫度之校正 32 3-4 實驗方法 32 3-5 實驗參數 33 3-6 實驗流程 35 3-6.1比較有無使用淺層溫能冷卻系統 35 3-6.2藉淺層溫能冷卻系統長時間運轉測試 36 3-6.3改變流率對淺層溫能冷卻系統之影響 37 3-7 誤差分析 37 第四章 結果與討論 53 4-1比較有無使用淺層溫能冷卻系統 53 4-1.1不藉淺層溫能冷卻測試(油浸自冷) 53 4-1.2藉淺層溫能冷卻性能測試(油浸水冷) 54 4-2藉淺層溫能冷卻系統長時間運轉測試 55 4-2.1水路順向之長時間運轉 56 4-2.2水路逆向之長時間運轉 56 4-2.3長時間運轉測試之誤差 58 4-3改變水路流率對淺層溫能冷卻系統之影響 58 4-3.1絕緣油溫之討論 58 4-3.2冷卻容量之討論 59 第五章 結論與建議 73 5-1結論 73 5-1.1比較有無使用淺層溫能冷卻之性能研究 73 5-1.2藉淺層溫能冷卻系統長時間運轉測試之性能研究 74 5-1.3改變水路流率對淺層溫能冷卻系統影響之性能研究 75 5-2建議 76 參考文獻 77 | |
| dc.language.iso | zh-TW | |
| dc.subject | 淺層溫能 | zh_TW |
| dc.subject | 油浸式變壓器 | zh_TW |
| dc.subject | 地埋管熱交換器 | zh_TW |
| dc.subject | geothermal energy | en |
| dc.subject | borehole heat exchanger | en |
| dc.subject | oil-immersed transformer | en |
| dc.title | 油浸式變壓器藉淺層溫能散熱之性能研究 | zh_TW |
| dc.title | Performance Study on Oil-immersed Transformer Box Cooling with Utilizing Shallow Geothermal Energy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李文興,江沅晉,吳文方 | |
| dc.subject.keyword | 淺層溫能,地埋管熱交換器,油浸式變壓器, | zh_TW |
| dc.subject.keyword | geothermal energy,borehole heat exchanger,oil-immersed transformer, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-10-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 3.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
