請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58894完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余化龍(Hwa-Lung Yu) | |
| dc.contributor.author | Yu-Zhang Wu | en |
| dc.contributor.author | 吳郁璋 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:37:16Z | - |
| dc.date.available | 2020-07-16 | |
| dc.date.copyright | 2020-07-16 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2020-07-10 | |
| dc.identifier.citation | Abdulle, Assyr, Blumenthal, Adrian. (2013). Stabilized multilevel Monte Carlo method for stiff stochastic differential equations. Journal of Computational Physics, 251, 445-460. doi: https://doi.org/10.1016/j.jcp.2013.05.039 Abokifa, Ahmed A, Yang, Y Jeffrey, Lo, Cynthia S, Biswas, Pratim. (2016). Water quality modeling in the dead end sections of drinking water distribution networks. Water Research, 89, 107-117. doi: https://doi.org/10.1016/j.watres.2015.11.025 Andricevic, Roko. (1993). Coupled withdrawal and sampling designs for groundwater supply models. Water Resources Research, 29(1), 5-16. Andricevic, Roko, Kitanidis, Peter K. (1990). Optimization of the pumping schedule in aquifer remediation under uncertainty. Water Resources Research, 26(5), 875-885. doi: https://doi.org/10.1029/WR026i005p00875 Assumaning, Godwin Appiah, Chang, Shoou-Yuh. (2016). Application of Sequential Data-Assimilation Techniques in Groundwater Contaminant Transport Modeling. Journal of Environmental Engineering, 142(2), 04015073. Basaran, Mustafa, Erpul, G., Ozcan, A. U., Saygin, D. S., Kibar, M., Bayramin, I., Yilman, F. E. (2011). Spatial information of soil hydraulic conductivity and performance of cokriging over kriging in a semi-arid basin scale. Environmental Earth Sciences, 63(4), 827-838. Batu, Vedat. (1998). Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis: John Wiley Sons. Bear, Jacob. (2013). Dynamics of fluids in porous media: Courier Corporation. Beck, M Bruce. (1987). Water quality modeling: a review of the analysis of uncertainty. Water Resources Research, 23(8), 1393-1442. Behmanesh, J, Bateni, MM. (2015). Covariance correction for estimating groundwater level using deterministic Ensemble Kalman Filter. Journal of Fundamental and Applied Sciences, 7(1), 1-13. Benevides, Alessandro B, Bastos Filho, Teodiano F, Sarcinelli Filho, Mário. (2012). Pseudo-online classification of mental tasks using Kullback-Leibler symmetric divergence. Journal of Medical and Biological Engineering, 32(6), 411-416. Bergman, LA, Wojtkiewicz, SF, Johnson, EA, Spencer Jr, BF. (1995). Some reflections on the efficacy of moment closure methods. Paper presented at the Proceedings of the Second International Conference on Computational Stochastic Mechanics, Balkema, Rotterdam. Boso, F, Tartakovsky, DM. (2013). CDF Solutions of Advection-Reaction equations with uncertain parameters. Paper presented at the AGU Fall Meeting Abstracts. Brooks, Stephen. (1998). Markov chain Monte Carlo method and its application. Journal of the Royal Statistical Society: Series D (the Statistician), 47(1), 69-100. Broyda, S, Dentz, M, Tartakovsky, DM. (2010). Probability density functions for advective–reactive transport in radial flow. Stochastic Environmental Research and Risk Assessment, 24(7), 985-992. Brus, DJ, Bogaert, Patrick, Heuvelink, GBM. (2008). Bayesian maximum entropy prediction of soil categories using a traditional soil map as soft information. European Journal of Soil Science, 59(2), 166-177. Bulygina, Nataliya, Gupta, Hoshin. (2009). Estimating the uncertain mathematical structure of a water balance model via Bayesian data assimilation. Water Resources Research, 45(12), W00B1301-1320. Burden, Richard L. , Faires, J. Douglas (2011). Numerical Analysis (9 ed.): Cengage Learning Asia Pet. Ltd. Butler, James J., Liu, Wenzhi. (1993). Pumping tests in nonuniform aquifers: The radially asymmetric case. Water Resources Research, 29(2), 259-269. Chapuis, Robert P. (2004). Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Canadian Geotechnical Journal, 41(5), 787-795. Chavent, G, Dupuy, M, Lemmonier, P. (1975). History matching by use of optimal theory. Society of Petroleum Engineers Journal, 15(01), 74-86. Chen, Yan, Zhang, Dongxiao. (2006). Data assimilation for transient flow in geologic formations via ensemble Kalman filter. Advances in Water Resources, 29(8), 1107-1122. Christakos, George. (1990). A Bayesian/maximum-entropy view to the spatial estimation problem. Mathematical Geology, 22(7), 763-777. Christakos, George, Serre, Marc L. (2000). BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmospheric Environment, 34(20), 3393-3406. Clark, Martyn P., Rupp, David E., Woods, Ross A., Zheng, Xiaogu, Ibbitt, Richard P., Slater, Andrew G., . . . Uddstrom, Michael J. (2008). Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Advances in Water Resources, 31(10), 1309-1324. Cover, Thomas M, Thomas, Joy A. (2012). Elements of information theory: John Wiley Sons. Dale, Virginia H, English, Mary R. (1999). Tools to aid environmental decision making: Springer Science Business Media. Davidsen, Claus, Pereira-Cardenal, Silvio J., Liu, Suxia, Mo, Xingguo, Rosbjerg, Dan, Bauer-Gottwein, Peter. (2014). Using stochastic dynamic programming to support water resources management in the Ziya River basin, China. Journal of Water Resources Planning and Management, 141(7), 0401408601-0401408612. doi: 10.1061/(ASCE)WR.1943-5452.0000482 Dettinger, Michael D, Wilson, John L. (1981). First Order Analysis of Uncertainty in. Water Resources Research, 17(1), 149-161. Domenico, PA, Mifflin, MD. (1965). Water from low‐permeability sediments and land subsidence. Water Resources Research, 1(4), 563-576. Domenico, Patrick A, Schwartz, Franklin W. (1998). Physical and chemical hydrogeology (Vol. 506): Wiley New York. Douaik, Ahmed, Van Meirvenne, Marc, Tóth, Tibor. (2005). Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data. Geoderma, 128(3), 234-248. Duan, Qingyun, Ajami, Newsha K, Gao, Xiaogang, Sorooshian, Soroosh. (2007). Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources, 30(5), 1371-1386. Eggleston, JR, Rojstaczer, SA, Peirce, JJ. (1996). Identification of hydraulic conductivity structure in sand and gravel aquifers: Cape Cod data set. Water Resources Research, 32(5), 1209-1222. Ehrendorfer, Martin. (2007). A review of issues in ensemble-based Kalman filtering. Meteorologische Zeitschrift, 16(6), 795-818. Eppstein, Margaret J, Dougherty, David E. (1996). Simultaneous estimation of transmissivity values and zonation. Water Resources Research, 32(11), 3321-3336. Evans, Lawrence C. (1998). Partial differential equations. Graduate Studies in Mathematics, 19. Evensen, Geir. (1994). Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. JGR Oceans, 99(C5), 10143-10162. Feyen, L, Beven, Keith J, De Smedt, F, Freer, J. (2001). Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: conditioning on head observations. Water Resources Research, 37(3), 625-638. Flaherty, Joseph E, Paslow, Pamela J, Shepard, Mark S, Vasilakis, John D. (1989). Adaptive methods for partial differential equations: Society of Industrial and Applied Mathematics. Franceschini, S, Tsai, C, Marani, M. (2012). Point estimate methods based on Taylor Series Expansion–The perturbance moments method–A more coherent derivation of the second order statistical moment. Applied Mathematical Modelling, 36(11), 5445-5454. Franssen, HJ Hendricks, Kinzelbach, W. (2008). Real‐time groundwater flow modeling with the ensemble Kalman filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resources Research, 44(9), W0940801-0940821. Franssen, HJ Hendricks, Kinzelbach, W. (2009). Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems. Journal of Hydrology, 365(3), 261-274. Gómez-Hernández, J Jaime, Journel, André G. (1993). Joint sequential simulation of multigaussian fields Geostatistics Troia’92 (pp. 85-94): Springer. Gillespie, Colin S. (2009). Moment-closure approximations for mass-action models. Systems Biology, IET, 3(1), 52-58. doi: 10.1049/iet-syb:20070031 Graham, Wendy, McLaughlin, Dennis. (1989). Stochastic analysis of non-stationary subsurface solute transport, 2. Conditional moments. Water Resources Research, 25, 2331-2355. Graham, Wendy, McLaughlin, Dennis. (1991). A stochastic model of solute transport in groundwater: Application to the Borden, Ontario, tracer test. Water Resources Research, 27(6), 1345-1359. Graham, Wendy, Tankersley, Claude. (1993). Forecasting piezometric head levels in the Floridan aquifer: A Kalman filtering approach. Water Resources Research, 29(11), 3791-3800. Groeneveld, Richard A, Meeden, Glen. (1984). Measuring skewness and kurtosis. The Statistician, 33(4), 391-399. doi: https://doi.org/10.2307/2987742| Gunckel, Thomas L. (1963). Orbit determination using Kalman's method. Navigation, 10(3), 273-291. Gupta, Hoshin Vijai, Sorooshian, Soroosh, Yapo, Patrice Ogou. (1998). Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resources Research, 34(4), 751-763. Hantush, Mohamed M, Mariño, Miguel A. (1994). Two‐dimensional stochastic analysis and optimal estimation in aquifers: Random recharge. Water Resources Research, 30(2), 559-569. Harr, Milton E. (1989). Probabilistic estimates for multivariate analyses. Applied Mathematical Modelling, 13(5), 313-318. Hoexselvin, ROBERT J, Kitanidis, Peter K. (1984). An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling. Water Resources Research, 20(7), 1003-1020. Holden, Helge, Øksendal, Bernt, Zhang, Tusheng, Ubøe, Jan. (2010). Stochastic Partial Differential Equations: A Modeling, White Noise Functional Approach. Hong, HP. (1998). An efficient point estimate method for probabilistic analysis. Reliability Engineering System Safety, 59(3), 261-267. Jarman, Kenneth D, Russell, Thomas F. (2003). Eulerian moment equations for 2-D stochastic immiscible flow. Multiscale Modeling Simulation, 1(4), 598-608. Jinno, Kenji, Kawamura, Akdra, Ueda, Toshbehko, Yoshinaga, Hiroshi. (1989). Prediction of the concentration distribution of groundwater pollutants. Groundwater Management: Quantity and Quality, 11(188), 131-142. Jordan, Dominic W, Smith, Peter. (2007). Nonlinear ordinary differential equations: Oxford Univ. Press. Kalman, Rudolph Emil. (1960). A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, 82(1), 35-45. Karahan, Halil, Ayvaz, M Tamer. (2006). Forecasting aquifer parameters using artificial neural networks. Journal of Porous Media, 9(5), 429-444. doi: 10.1615/JPorMedia.v9.i5.40 Kolovos, Alexander, Christakos, George, Serre, Marc L, Miller, Cass T. (2002). Computational Bayesian maximum entropy solution of a stochastic advection‐reaction equation in the light of site‐specific information. Water Resources Research, 38(12), 54-51-54-17. doi: https://doi.org/10.1029/2001WR000743| Law, Dionne C Gesink, Bernstein, Kyle T, Serre, Marc L, Schumacher, Christina M, Leone, Peter A, Zenilman, Jonathan M, . . . Rompalo, Anne M. (2006). Modeling a syphilis outbreak through space and time using the Bayesian maximum entropy approach. Annals of Epidemiology, 16(11), 797-804. Lee, Chang Hyeong. (2013). A moment closure method for stochastic chemical reaction networks with general kinetics. MATCH Communications in Mathematical and in Computer Chemistry, 70, 785-800. Lee, Sang-Il, Kitanidis, Peter K. (1991). Optimal estimation and scheduling in aquifer remediation with incomplete information. Water Resourch Research, 27(9), 2203-2217. Lee, Seung-Jae, Balling, Robert, Gober, Patricia. (2008). Bayesian maximum entropy mapping and the soft data problem in urban climate research. Annals of the Association of American Geographers, 98(2), 309-322. Li, Bailing, Yeh, T‐C Jim. (1999). Cokriging estimation of the conductivity field under variably saturated flow conditions. Water Resources Research, 35(12), 3663-3674. Li, KS. (1992). Point-estimate method for calculating statistical moments. Journal of Engineering Mechanics, 118(7), 1506-1511. Liu, Gaisheng, Chen, Yan, Zhang, Dongxiao. (2008). Investigation of flow and transport processes at the MADE site using ensemble Kalman filter. Advances in Water Resources, 31(7), 975-986. Liu, Shuyun, Yeh, T‐C Jim, Gardiner, Ryan. (2002). Effectiveness of hydraulic tomography: Sandbox experiments. Water Resources Research, 38(4), 5-1-5-9. Liu, Yuqiong, Gupta, Hoshin V. (2007). Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resources Research, 43(7), W0741001-0741018. Mbonimpa, M, Aubertin, M, Chapuis, RP, Bussière, B. (2002). Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotechnical Geological Engineering, 20(3), 235-259. McLaughlin, Dennis. (2002). An integrated approach to hydrologic data assimilation: interpolation, smoothing, and filtering. Advances in Water Resources, 25(8), 1275-1286. Morokoff, William J, Caflisch, Russel E. (1995). Quasi-monte carlo integration. Journal of Computational Physics, 122(2), 218-230. Mynett, Arthur E. (1999). Hydroinformatics and its applications at Delft Hydraulics. Journal of Hydroinformatics, 1(2), 83-102. Neuman, Shlomo P. (2005). Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeology Journal, 13(1), 124-147. Neuman, Shlomo P. (2003). Maximum likelihood Bayesian averaging of uncertain model predictions. Stochastic Environmental Research and Risk Assessment, 17(5), 291-305. Neuman, Shlomo P., Xue, Liang, Ye, Ming, Lu, Dan. (2012). Bayesian analysis of data-worth considering model and parameter uncertainties. Advances in Water Resources, 36, 75-85. Neuman, Shlomo P., Yakowitz, S. (1979). A statistical approach to the inverse problem of aquifer hydrology. 1 Theory. Water Resources Research, 15(4), 845-860. Nouy, Anthony. (2007). A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations. Computer Methods in Applied Mechanics and Engineering, 196(45), 4521-4537. Oke, Peter R, Sakov, Pavel, Corney, Stuart P. (2007). Impacts of localisation in the EnKF and EnOI: experiments with a small model. Ocean Dynamics, 57(1), 32-45. Pachner, Jaroslav. (1983). Handbook of numerical analysis applications with programs for engineers and scientists: McGraw-Hill, Inc. Panzeri, M, Riva, M, Guadagnini, A, Neuman, Shlomo P. (2013). Data assimilation and parameter estimation via ensemble Kalman filter coupled with stochastic moment equations of transient groundwater flow. Water Resources Research, 49(3), 1334-1344. Pauwels, Valentijn, Verhoest, Niko EC, De Lannoy, Gabriëlle JM, Guissard, Vincent, Lucau, Cozmin, Defourny, Pierre. (2007). Optimization of a coupled hydrology–crop growth model through the assimilation of observed soil moisture and leaf area index values using an ensemble Kalman filter. Water Resources Research, 43(4), W0442101-0442117. Petrie, Ruth E. (2008). Localization in the ensemble Kalman Filter. MSc Atmosphere, Ocean and Climate University of Reading. Petrie, Ruth E, Dance, Sarah L. (2010). Ensemble‐based data assimilation and the localisation problem. Weather, 65(3), 65-69. Prakash, Om, Datta, Bithin. (2015). Optimal characterization of pollutant sources in contaminated aquifers by integrating sequential-monitoring-network design and source identification: methodology and an application in Australia. Hydrogeology Journal, 23(6), 1089-1107. Press, William H, Teukolsky, Saul A, Vetterling, William T, Flannery, Brian P. (1996). Numerical recipes in C (Vol. 2): Cambridge University Press Cambridge. Rojas, Rodrigo, Feyen, Luc, Batelaan, Okke, Dassargues, Alain. (2010). On the value of conditioning data to reduce conceptual model uncertainty in groundwater modeling. Water Resources Research, 46(8), W0852001-0852020. Rojas, Rodrigo, Feyen, Luc, Dassargues, Alain. (2008). Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging. Water Resources Research, 44(12), W1241801-1241816. Rosenblueth, Emilio. (1975). Point estimates for probability moments. Proceedings of the National Academy of Sciences, 72(10), 3812-3814. Rubner, Yossi, Tomasi, Carlo, Guibas, Leonidas J. (2000). The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision, 40(2), 99-121. Schmidke, Klaus D, McBean, Edward A, Sykes, Jonathan F. (1982). Stochastic estimation of states in unconfined aquifers subject to artificial recharge. Water Resources Research, 18(5), 1519-1530. Schulze-Makuch, Dirk, Cherkauer, Douglas S. (1998). Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks. Hydrogeology Journal, 6(2), 204-215. Serre, ML, Bogaert, Patrick, Christakos, George. (1998). Computational investigations of Bayesian maximum entropy spatiotemporal mapping. Paper presented at the 4th Annual Conference. Serre, ML, Christakos, G. (1999). Modern geostatistics: computational BME analysis in the light of uncertain physical knowledge–the Equus Beds study. Stochastic Environmental Research and Risk Assessment, 13(1-2), 1-26. Severino, G, Dagan, G, van Duijn, CJ. (2000). A note on transport of a pulse of nonlinearly reactive solute in a heterogeneous formation. Computational Geosciences, 4(3), 275-286. Sobieraj, JA, Elsenbeer, H, Cameron, G. (2004). Scale dependency in spatial patterns of saturated hydraulic conductivity. Catena, 55(1), 49-77. Soupios, Pantelis M, Kouli, Maria, Vallianatos, Filippos, Vafidis, Antonis, Stavroulakis, George. (2007). Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete–Greece). Journal of Hydrology, 338(1), 122-131. Taneja, Inder Jeet. (2005). Generalized symmetric divergence measures and inequalities. arXiv preprint math/0501301, 7(4, Art. 9.). Tang, Q, Kurtz, W, Brunner, P, Vereecken, H, Franssen, H-J Hendricks. (2015). Characterisation of river–aquifer exchange fluxes: The role of spatial patterns of riverbed hydraulic conductivities. Journal of Hydrology, 531(Part1), 111-123. doi: https://doi.org/10.1016/j.jhydrol.2015.08.019 Tartakovsky, Daniel M. (2007). Probabilistic risk analysis in subsurface hydrology. Geophysical research letters, 34(5), L0540401-0540405. Tartakovsky, Daniel M, Dentz, Marco, Lichtner, Peter C. (2009). Probability density functions for advective‐reactive transport with uncertain reaction rates. Water Resources Research, 45(7), W0741401-0741408. Ting, Cheh‐Shyh, Zhou, Yangxiao, De Vries, JJ, Simmers, I. (1998). Development of a preliminary ground water flow model for water resources management in the Pingtung Plain, Taiwan. Groundwater, 36(1), 20-36. Troisi, S, Fallico, C, Straface, S, Migliari, E. (2000). Application of kriging with external drift to estimate hydraulic conductivity from electrical-resistivity data in unconsolidated deposits near Montalto Uffugo, Italy. Hydrogeology Journal, 8(4), 356-367. Tsai, Christina W, Franceschini, Samuela. (2005). Evaluation of probabilistic point estimate methods in uncertainty analysis for environmental engineering applications. Journal of Environmental Engineering, 131(3), 387-395. Tsai, Frank T-C. (2010). Bayesian model averaging assessment on groundwater management under model structure uncertainty. Stochastic Environmental Research and Risk Assessment, 24(6), 845-861. Van Geer, FC, Van Der Kloet, P. (1985). Two algorithms for parameter estimation in groundwater flow problems. Journal of Hydrology, 77(1), 361-378. Van, Tran Duc, Tsuji, Miko, Son, Nguyen Duy Thai. (1999). The Characteristic method and its generalizations for first-order nonlinear partial differential equations (Vol. 101): CRC Press. Wackernagel, Hans. (2003). Multivariate geostatistics: Springer Science Business Media. Wagener, Thorsten, Boyle, Douglas P, Lees, Matthew J, Wheater, Howard S, Gupta, Hoshin V, Sorooshian, Soroosh. (2001). A framework for development and application of hydrological models. Hydrology and Earth System Sciences Discussions, 5(1), 13-26. Wagener, Thorsten, Gupta, Hoshin V. (2005). Model identification for hydrological forecasting under uncertainty. Stochastic Environmental Research and Risk Assessment, 19(6), 378-387. Wang, Peng, Tartakovsky, Daniel M. (2012). Uncertainty quantification in kinematic-wave models. Journal of Computational Physics, 231(23), 7868-7880. Whitehead, Paul G. (1979). Applications of recursive estimation techniques to time variable hydrological systems. Journal of Hydrology, 40(1), 1-16. Whitehead, Paul G., Beck, Bruce, O'Connell, Enda. (1981). A systems model of streamflow and water quality in the Bedford Ouse river system—II. Water quality modelling. Water Research, 15(10), 1157-1171. Wilson, J, Kitanidis, P, Dettinger, M. (1978). State and parameter estimation in groundwater models. Applications of Kalman Filter to Hydrology, Hydraulics, and Water Resources, 657-679. Xiang, Jianwei, Yeh, Tian‐Chyi J, Lee, Cheng‐Haw, Hsu, Kuo‐Chin, Wen, Jet‐Chau. (2009). A simultaneous successive linear estimator and a guide for hydraulic tomography analysis. Water Resources Research, 45(2). Xue, Liang. (2015). Application of the Multimodel Ensemble Kalman Filter Method in Groundwater System. Water, 7(2), 528-545. Xue, Liang, Zhang, Dongxiao. (2014). A multimodel data assimilation framework via the ensemble Kalman filter. Water Resources Research, 50(5), 4197-4219. Xue, Liang, Zhang, Dongxiao, Guadagnini, Alberto, Neuman, Shlomo P. (2014). Multimodel Bayesian analysis of groundwater data worth. Water Resources Research, 50(11), 8481-8496. Yangxiao, Zhou, Te Stroet, Chris, Van Geer, Frans C. (1991). Using Kalman filtering to improve and quantify the uncertainty of numerical groundwater simulations: 2. Application to monitoring network design. Water Resources Research, 27(8), 1995-2006. Ye, Ming, Meyer, Philip D, Neuman, Shlomo P. (2008). On model selection criteria in multimodel analysis. Water Resources Research, 44(3), W0342801-0342812. Ye, Ming, Neuman, Shlomo P, Meyer, Philip D. (2004). Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff. Water Resources Research, 40(5), W0511301-0511317. Yeh, T‐C Jim, Jin, Minghui, Hanna, Samuel. (1996). An iterative stochastic inverse method: Conditional effective transmissivity and hydraulic head fields. Water Resources Research, 32(1), 85-92. Yeh, William W‐G, Yoon, Young S. (1981). Aquifer parameter identification with optimum dimension in parameterization. Water Resources Research, 17(3), 664-672. Yu, Hwa-Lung, Chen, Jiu-Chiuan, Christakos, George, Jerrett, Michael. (2009). BME estimation of residential exposure to ambient PM10 and ozone at multiple time scales. Environ Health Perspect, 117(4), 537-544. Yu, Hwa-Lung, Chiang, Chi-Ting, Lin, Shu-De, Chang, Tsun-Kuo. (2010). Spatiotemporal analysis and mapping of oral cancer risk in Changhua County (Taiwan): an application of generalized Bayesian maximum entropy method. Annals of Epidemiology, 20(2), 99-107. Zhu, Junfeng, Yeh, Tian-Chyi J. (2005). Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resources Research, 41(7), W0702801-0702810. doi: https://doi.org/10.1029/2004WR003790| | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58894 | - |
| dc.description.abstract | 由於水文現象之複雜性及觀測資料的有限性,且水文課題具有高度的不確定性;為減少水文模型推估上之不確定性;貝氏最大熵法可融合一般性知識及特定性知識,本研究以延伸卡曼濾波器架構下結合貝氏最大熵法,發展出貝氏最大熵濾波器,以減少水文模型與觀測資料間的差距,本研究可分成兩個部分進行探討:(1) 以動差近似法探討模型狀態及參數之不確定性,以一維移流反應方程模擬河川污染物傳輸為例,污染物傳輸過程中流速及生物化學反應的不確定性,造成污染物度模擬結果具有高度的不確定性;(2)透過知識融合方法整合一般性知識及特定性知識,以減少水文模型之不確定性,並減少模型與觀測資料上的差距,以地下水模型MODFLOW為例,於人造二維地下水侷限含水層中進行數值試驗,依觀測資料分佈型態分成兩種方法進行,第一,所觀測資料若假設為高斯分佈則可以透過延伸卡曼濾波器進行資料同化;第二,若存在非高斯觀測資料,透過貝氏最大熵濾波器進行資料同化。 研究成果顯示,(1)來自物理方程式之統計動差可以透過動差近似法獲得,這些統計動差可以當成貝氏最大熵法一般性知識,(2)貝式最大熵濾波器可融合一般性知識及特定性知識,其推估成果可以以機率密度函數呈現,不受觀測資料分布型態的限制,直接透過非高斯觀測資料進行資料同化。若一般性知識及特定性知識都只取前二階動差,貝式最大熵濾波器推估結果與延伸卡曼濾波器相同,因此,貝式最大熵濾波器比延伸卡曼濾波器更為實用。 | zh_TW |
| dc.description.abstract | Due to the complexity of hydrological phenomena and the limitation of observation data, hydrological issues have high uncertainty. Therefore, in order to reduce the uncertainty of the hydrological model, this study developed the Bayesian Maximum Entropy Filter(BMEF). It is a data assimilation approach which is capable for considering non-Gaussian observations by integrating Extended Kalman Filter(EKF) method under Bayesian Maximum Entropy(BME) framework. The general knowledge and the specific knowledge is synthesized through BME framework, by reducing the gap between hydrological models and observational data. This study can be divided into two parts: (1) The Moment Closure Method is used for explore the uncertainty of the model state and parameters. Take simulating the uncertainty of contamination transportation in the river flow by the one-dimensional advection-reaction equation for example. The uncertainty of the velocity and biochemical reaction during the contamination transportation caused the simulation results of the contamination transportation in a highly uncertain. (2) Furthermore, the general knowledge and the specific knowledge are integrated through BME framework, thus reducing the uncertainty of MODFLOW, and similarly reducing the gap between the model and the observation data. Taking the groundwater model MODFLOW as an example, as the numerical experiments are conducted in a synthetic two-dimensional confined aquifer, it is divided into two methods according to the distribution of observation data. First, if the observed data are gaussian assumption, data assimilation can be performed through EKF. Second, if the observation data exist some non-Gaussian distribution (no distributional assumption), data assimilation well be performed through the BMEF. this study shows two results, (1) The statistical momentum from the physical equations can be obtained through the Moment Closure Method. These statistical moments can be used in the constraint of BME for general knowledge bases. (2) BMEF can integrate general knowledge bases and specific knowledge bases. BME framework can consider the soft data with no distributional assumption. BMEF can be directly performed through non-Gaussian observation data. The estimated results can be presented as probability density function. If the general knowledge and specific knowledge are only taken from the first two moments, the results of the two filters are the same. Therefore, BMEF is more practical than Extended Kalman Filter. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:37:16Z (GMT). No. of bitstreams: 1 U0001-0907202008175600.pdf: 5307970 bytes, checksum: 8a7b5f3b14522d906acb5ede5b30a2ce (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 目錄 第一章、前言 1 1.1、研究動機 1 1.2、研究目的 3 1.3、研究方法 4 1.4、本文架構 6 第二章、文獻回顧 9 2.1、不確定性 9 2.2、濾波器發展過程 11 2.3、貝氏最大熵法 13 2.4、統計動差觀點 14 第三章、理論 17 3.1、地下水數值模型 17 3.2、延伸卡曼濾波器(EKF) 19 3.3、貝氏最大熵濾波器(BMEF) 23 3.4、動差近似法 25 第四章、案例探討 31 4.1、延伸卡曼濾波器(EKF)案例探討 31 4.1.1、EKF案例設計 31 4.1.2、EKF案例結果 39 4.1.2.1、EKF案例水位推估結果 41 4.1.2.2、EKF案例水力傳導係數推估結果 44 4.1.3、EKF案例討論 49 4.2、貝氏最大熵濾波器(BMEF)案例探討 50 4.2.1、BMEF案例設計 50 4.2.2、BMEF案例結果 60 4.2.2.1、BMEF更新模型誤差指標 60 4.2.2.2、案例4、案例5及案例6水位更新成果分析 62 4.2.2.3、案例4、案例5及案例6水力傳導係數更新成果分析 66 4.2.2.4、案例4、案例5及案例6比儲水係數更新成果分析 68 4.2.3、BMEF案例討論 72 4.3、動差近似法案例探討 74 4.3.1、動差近似法案例設計 74 4.3.2、動差近似法案例結果 82 4.3.2.1、動差近似法案驗證方式 82 4.3.2.2、動差近似法應用於河川污染傳輸案例結果(案例7) 84 4.3.2.3、動差近似法應用於反應率為常態分佈河川案例結果(案例8) 91 4.3.2.4、動差近似法應用於流速為常態分佈河川案例結果(案例9) 99 4.3.2.5、動差近似法計算效率 105 4.3.3、動差近似法案例討論 108 第五章、結論與建議 111 5.1、結論 111 5.2、建議 113 5.3、本論文部分已發表成果 114 附錄1 方程式對照表 115 參考文獻 123 圖目錄 圖1研究流程架構 7 圖2人工場址 32 圖3含水層高層:頂部高層(左)及底部高層(右) 33 圖4場址上方變動水位邊界 33 圖5 (a)第1到第3個觀測井 (b)第4到第6個觀測井 (c)第7到第9個觀測井之水位資料 35 圖6 邊界水位(a) hb_1 (b) hb_2 (c) hb_3 (d) hb_4 (e) hb_5 (f) hb_6 (g) hb_7 (h) hb_8 (i) hb_9 (j) hb_10邊界水位內差值與真實值的關係 36 圖7對數水力傳導係數觀測資料與真實值的關係 37 圖8案例1分析及預報水位誤差平方和 圖 41 圖9案例2分析及預報水位誤差平方和 圖 42 圖10案例3分析及預報水位誤差平方和 圖 43 圖11預報的水位誤差平方和 44 圖12 與時間的關係 45 圖13案例3水力傳導係數推估結果 49 圖14人工場地中觀測及推估相關位置,●表示地下水水位觀測井位置,▼表示上方定水頭邊界位置,▲表示土壤種類觀測位置,⋆表示展現推估PDF位置。 52 圖15由圖14中山脈稜線邊界(hb_14)向下至海岸邊界之地層斷面圖 52 圖16(a)模擬含水層的頂層和(b)底部的高程 54 圖17邊界條件 (a)hb_1~hb_7 (b)hb_8~hb_12 (c)hb_13~hb_18 (d)hb_19~hb_23 水位變化的時間序列 55 圖18觀測井(a)h_1~h_4(b)h_5~h_8(c)h_9~h_12(d)h_13~h_16地下水水位觀測資料 56 圖19猜測上邊界水位(a)hb_1(b)hb_5(c)hb_9(d)hb_13(e)hb_17(f)hb_21水位資料 57 圖20土壤種類資料(a)對數水力傳導係數(b)比儲水係數資料區間與實際值(⋆)之間的關係 58 圖21地下水水位MSE 61 圖22案例6第2時刻中(a)K_1(b)K_2(c)K_3(d)K_4水位PDF 64 圖23案例6第46時刻中(a)K_1(b)K_2(c)K_3(d)K_4水位PDF 65 圖24案例6第63時刻中(a)K_1(b)K_2(c)K_3(d)K_4水位PDF 66 圖25水力傳導係數MSE 67 圖26案例6第2時刻中(a)K_5(b)K_6的水力傳導係數PDF 68 圖27比儲水係數估算中MSE 70 圖28案例6第2時刻中(a)K_5(b)K_6比儲水係數PDF 72 圖29污染物濃度一階動差邊界條件 75 圖30污染物濃度第1、2、4、6天邊界與內部位置之共變異係數關系圖 78 圖31 平衡時(超過10天)邊界點與內部點之共變異係數 78 圖32污染物濃度二階動差邊界條件 79 圖33 污染物濃度三階動差邊界條件 80 圖34案例7以動差近似法所得求得之污染物濃度(a)一階(b)二階(c)三階動差 85 圖35案例7不同時空間下濃度的變異數 88 圖36案例7不同時間下內部第一點( =2km )與不同距離的共變異係數 89 圖37案例7中動差近似法與蒙地卡羅法(a)一階(b)二階(c)三階動差比較圖 90 圖38案例8中動差近似法所求得污染物濃度(a)一階(b)二階(c)三階動差 92 圖39案例8動差近似法與蒙地卡羅法之(a)一階(b)二階(c)三階動差比較圖 96 圖40案例8不同時空間位置下濃度的變異數 97 圖41 案例8不同時間下內部第一點( =2km )與不同距離的共變異係數 97 圖42案例8不同時空間下污染物濃度之偏度係數 98 圖43 案例9中以動差近似法所得之污染物濃度(a)一階(b)二階(c)三階動差 100 圖44案例9動差近似法與蒙地卡羅法之(a)一階(b)二階(c)三階動差比較圖 103 圖45案例9不同時空間位置下濃度的變異數 104 圖46案例9不同時空間下污染物濃度之偏度係數 104 表目錄 表 1案例1、案例2及案例3使用觀測性資料 38 表2案例1 峰值 45 表3每年第一個月的 46 表4 案例4、案例5及案例6使用觀測性資料 58 表5每年地下水水位MSE峰值 63 表6每年水力傳導係數MSE峰值 68 表7每年比儲水係數MSE峰值 69 表 8 案例7-案例9使用參數差異 81 表9蒙地卡羅法不同抽樣數之耗時與 距離 106 表10 不同來源比例之偏度係數 107 | |
| dc.language.iso | zh-TW | |
| dc.subject | 參數校準 | zh_TW |
| dc.subject | 延伸卡曼濾波器 | zh_TW |
| dc.subject | 貝式最大熵濾波器 | zh_TW |
| dc.subject | 動差近似法 | zh_TW |
| dc.subject | 地下水模型 | zh_TW |
| dc.subject | Bayesian Maximum Entropy Filter(BMEF) | en |
| dc.subject | Moment Closure Method | en |
| dc.subject | Calibrations of parameters | en |
| dc.subject | Groundwater model | en |
| dc.subject | Extended Kalman Filer(EKF) | en |
| dc.title | 貝式最大熵法與資料同化方法之整合 | zh_TW |
| dc.title | Investigating Bayesian Maximum Entropy for Data Assimilation Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張倉榮(Tsang-Jung Chang),譚義績(Yih-Chi Tan),陳主惠(Chu-hui Chen),,羅偉誠(wei-cheng Lo) | |
| dc.subject.keyword | 延伸卡曼濾波器,貝式最大熵濾波器,動差近似法,參數校準,地下水模型, | zh_TW |
| dc.subject.keyword | Extended Kalman Filer(EKF),Bayesian Maximum Entropy Filter(BMEF),Moment Closure Method,Calibrations of parameters,Groundwater model, | en |
| dc.relation.page | 134 | |
| dc.identifier.doi | 10.6342/NTU202001402 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-10 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0907202008175600.pdf 未授權公開取用 | 5.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
