Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉開溫
dc.contributor.authorHang Linen
dc.contributor.author林涵zh_TW
dc.date.accessioned2021-06-16T08:36:17Z-
dc.date.available2017-01-27
dc.date.copyright2014-01-27
dc.date.issued2013
dc.date.submitted2013-11-07
dc.identifier.citation台灣綜合研究院 (2007)。專題分析報導—國際生質柴油推展之初步探討。石油 
   市場雙周報。
古森本 (2008)。生質能源作物之開發與潛力。農業生技產業季刊。  
   13:46-53。
行政院環保署 (2013)。建置金門低碳島專案計畫。
胡薏文 (2013)。中鋼集團加入金門低碳島計畫,規劃建置生質汽電廠。鉅亨網        
   報導。
許峻賓 (2007)。全球再生能源發展概況。經濟部能源局能源報導。
張春強 (2009)。痲瘋樹籽實的毒性原理及其脫毒處理方法概述。飼料博覽,文 
   章編號:1001(2009)05-0029-03。
蔡芷妤 (2012)。激勃素調控痲瘋樹株高之研究與建立轉基因系統培育高產及半
矮化痲瘋樹品系。國立台灣大學生命科學院植物科學研究所碩士論文。
楊少強 (2007)。毒樹煉油綠金趨勢。商業週刊,第1041期。
楊達鑫 (2009)。全球綠色能源投資趨勢之研究。行政院經濟建設委員會報導。
經濟部能源局 (2010)。建置澎湖低碳島專案計畫。
歐嘉瑞 (2010)。第六屆 兩岸經貿文化論壇-加強新興產業合作,提升兩岸競爭         
   力。
簡道南 (2009)。令人驚嘆的痲瘋樹。台肥月刊,第50卷第01期。
Aloni, R., Langhans, M., Aloni, E., Dreieicher, E., and Ullrich, C.I. (2005). Root-synthesized cytokinin in Arabidopsis is distributed in the shoot by the transpiration stream. J. Exp. Bot. 56: 1535-1544.
Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E.R., Qian, Q., Kitano, H., and Matsuoka, M. (2005). Cytokinin oxidase regulates rice grain production. Science 309: 741-745.
Atkins, C., and Pigeaire, A. (1993). Application of cytokinins to flowers to increase pod set in Lupinus angustifolius L. Crop and Pasture Sci. 44: 1799-1819.
Atkins, C.A., Emery, R.N., and Smith, P.M. (2011). Consequences of transforming narrow leafed lupin (Lupinus angustifolius [L.]) with an ipt gene under control of a flower-specific promoter. Transgenic Res. 20: 1321-1332.
Barry, G., Rogers, S., Fraley, R., and Brand, L. (1984). Identification of a cloned cytokinin biosynthetic gene. Proc. Natl. Acad. Sci. USA 81: 4776-4780.
Bartrina, I., Otto, E., Strnad, M., Werner, T., and Schmulling, T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23: 69-80.
Becker, K., and Makkar, H. (1998). Effects of phorbol esters in carp (Cyprinus carpio L). Vet. Hum. Toxicol. 40: 82.
Brodersen, P., Sakvarelidze-Achard, L., Bruun-Rasmussen, M., Dunoyer, P., Yamamoto, Y.Y., Sieburth, L., and Voinnet, O. (2008). Widespread translational inhibition by plant miRNAs and siRNAs. Science 320: 1185.
Dahmer, N., Wittmann, M.S., and dos Santos Dias, L.A. (2009) Chromosome numbers of Jatropha curcas L.: an important agrofuel plant. Crop Breed. Appl. Biotechnol. 9:386-389
Datta, M.M., Mukherjee, P., Ghosh, B., and Jha, T.B. (2007). In vitro clonal propagation of biodiesel plant (Jatropha curcas L.). Curr. Sci. 93: 1438.
Daud, N., Faizal, A., and Geelen, D. (2013). Adventitious rooting of Jatropha curcas L. is stimulated by phloroglucinol and by red LED light. In Vitro Cell. Dev. Biol. Plant 49: 183-190.

De Klerk, G.-J., Guan, H., Huisman, P., and Marinova, S. (2011). Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regul. 63: 175-185.
Dobranszki, J., and Teixeira da Silva, J.A. (2010). Micropropagation of apple—a review. Biotechnol. Adv. 28: 462-488.
Frebort, I., Kowalska, M., Hluska, T., Frebortova, J., and Galuszka, P. (2011). Evolution of cytokinin biosynthesis and degradation. J. Exp. Bot. 62: 2431-2452.
Guo, Y., and Gan, S. (2011). AtMYB2 regulates whole plant senescence by inhibiting cytokinin-mediated branching at late stages of development in Arabidopsis. Plant Physiol. 156: 1612-1619.
Haas, W., Sterk, H., and Mittelbach, M. (2002). Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. J. Nat. Prod. 65: 1434-1440.
He, W., King, A.J., Khan, M.A., Cuevas, J.A., Ramiaramanana, D., and Graham, I.A. (2011). Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiol. Biochem. 49: 1183-1190.
He, Y., Pasapula, V., Li, X., Lu, R., Niu, B., Hou, P., Wang, Y., Xu, Y., and Chen, F. (2009). Agrobacterium tumefaciens-mediated transformation of Jatropha curcas: factors affecting transient transformation efficiency and morphology analysis of transgenic Calli. Silvae Genet. 58: 123.
Karimi, M., Inze, D., and Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7: 193-195.
Khan, B.H. (2009). Non-conventional energy resources. Tata McGraw Hill Publishers, 2nd Ed. pp. 279.
Khemkladngoen, N., Cartagena, J., Shibagaki, N., and Fukui, K. (2011). Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing plant, Jatropha curcas L. J. Biosci. Bioeng. 111: 67-70.
Kirby, J., and Keasling, J.D. (2009). Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu. Rev. Plant Biol. 60: 335-355.
Kirby, J., Nishimoto, M., Park, J. G., Withers, S. T., Nowroozi, F., Behrendt, D., Rutledge, E. J. G., Fortman, J. L., Johnson, H. E., and Anderson, J. V. (2010). Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochem. 71: 1466-1473.
Kumar, N., and Reddy, M. (2010). Plant regeneration through the direct induction of shoot buds from petiole explants of Jatropha curcas: a biofuel plant. Ann. Appl. Biol. 156: 367-375.
Li, C.-Y., Devappa, R.K., Liu, J.-X., Lv, J.-M., Makkar, H., and Becker, K. (2010). Toxicity of Jatropha curcas phorbol esters in mice. Food Chem. Toxicol. 48: 620-625.
Li, M., Li, H., Jiang, H., Pan, X., and Wu, G. (2008). Establishment of an Agrobacteriuim-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tiss. Org. Cult. 92: 173-181.
Li, X.G., Su, Y.H., Zhao, X.Y., Li, W., Gao, X.Q., and Zhang, X.S. (2010). Cytokinin overproduction-caused alteration of flower development is partially mediated by CUC2 and CUC3 in Arabidopsis. Gene 450: 109-120.

Makkar, H., Aderibigbe, A., and Becker, K. (1998). Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem. 62: 207-215.
Mazumdar, P., Basu, A., Paul, A., Mahanta, C., and Sahoo, L. (2010). Age and orientation of the cotyledonary leaf explants determine the efficiency of de novo plant regeneration and Agrobacterium tumefaciens-mediated transformation in Jatropha curcas L. S. Afr. J. Bot. 76: 337-344.
Miyawaki, K., Tarkowski, P., Matsumoto-Kitano, M., Kato, T., Sato, S., Tarkowska, D., Tabata, S., Sandberg, G., and Kakimoto, T. (2006). Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Pro. Natl. Acad. Sci. 103: 16598-16603.
Nakano, Y., Ohtani, M., Polsri, W., Usami, T., Sambongi, K., and Demura, T.
(2012) Characterization of the casbene synthase homolog from Jatropha (Jatropha curcas L.). Plant Biotechnol. 29: 185-189.
Natarajan, P., Kanagasabapathy, D., Gunadayalan, G., Panchalingam, J., Sugantham, P.A., Singh, K.K., and Madasamy, P. (2010). Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genomics 11: 606.
Ohkawa, K. (1979). Effects of gibberellins and benzylandenine on dormancy and flowering of Lilium speciosum. Scientia. Hortic. 10: 255-260.
Pan, B.-Z., and Xu, Z.-F. (2011). Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J. Plant Growth Regul. 30: 166-174.

Pan, J., Fu, Q., and Xu, Z.-F. (2010). Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection. Afr. J. Biotechnol. 9: 6477-6481.
Prat, L., Botti, C., and Fichet, T. (2008). Effect of plant growth regulators on floral differentiation and seed production in Jojoba (Simmondsia chinensis (Link) Schneider). Ind. Crop. Prod. 27: 44-49.
Rakshit, K., Darukeshwara, J., Rathina Raj, K., Narasimhamurthy, K., Saibaba, P., and Bhagya, S. (2008). Toxicity studies of detoxified Jatropha meal ( Jatropha curcas) in rats. Food Chem. Toxicol. 46: 3621-3625.
Spichal, L., Rakova, N.Y., Riefler, M., Mizuno, T., Romanov, G.A., Strnad, M., and
Schmulling, T. (2004). Two cytokinin receptors of Arabidopsis thaliana,
CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay.
Plant Cell Physiol. 45: 1299-1305.
Wagenknecht, A.C., and Burris, R.H. (1950). Indoleacetic acid inactivating enzymes from bean roots and pea seedlings. Arch. Biochem. 25: 30-53.
Yong, Y. (2008). Effects of endophytic fungi and different mediums on growth and transplanting and exercising of tube seedling in Euphorbia pekinensis. J. of Anhui Agri. Sci. 36: 505.
 
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58878-
dc.description.abstract由於痲瘋樹種子含油量高且為非食用作物,故近來成為熱門的能源作物,但痲瘋樹仍有些缺點阻礙其邁向生質柴油產業化發展,例如種子產量低以及全株有毒,使之榨油後的餅粕無法再利用製造動物飼料。前人研究指出透過外加細胞分裂素於痲瘋樹花序上能促進細胞分裂,使花朵數目增加進而使種子產量提升;也有研究指出細胞分裂素生合成的關鍵酵素—異戊烯基轉移酶 ( isopentenyltransferase,IPT),以及將細胞分裂素降解之酵素—細胞分裂素氧化酶 (cytokinin oxidase,CKX) 為主要影響植物中細胞分裂素含量之酵素,並且影響植物之種子產量。由於利用外加細胞分裂素提升痲瘋樹產量會使生產成本過高,因此本研究目標為利用基因轉殖的方式提高痲瘋樹內生細胞分裂素含量,進而改善其產量。本研究首先施加人工生合成的細胞分裂素— 6-benzyladenine 於痲瘋樹花序上,證明細胞分裂素會影響痲瘋樹產量後,進一步去探討JcIPTs及JcCKXs在痲瘋樹各器官之表現情形,作為構築載體之基準。根據JcIPTs及JcCKXs表現量分析,構築了JcCKX5-RNAi和35S::JcIPT1兩種載體,利用農桿菌轉殖法送入痲瘋樹,並且突破了研究室先前轉殖株發根及馴化之瓶頸,目前35S::JcIPT1轉殖株系15之JcIPT1表現量高於轉殖空載體之痲瘋樹將近五倍,35S::JcIPT1轉殖不定芽之株系1內生細胞分裂素高於轉殖空載體之痲瘋樹近九倍,可知本研究構築之35S::JcIPT1載體轉殖入痲瘋樹後可在痲瘋樹中大量表現,提高細胞分裂素含量。另外為了去除痲瘋樹內生性毒素,使其榨油後之餅粕可再利用作為動物飼料,提升其經濟價植,本研究也探討痲瘋樹主要毒素佛波酯 (phorbol ester) 之生合成酵素蓖麻烯合成酶 (casbene synthase,CAS) 在營養器官及不同階段果實的基因表現情形,JcCAS1主要表現在根及萌發中種子表現,不會在葉片中表現,並且隨著果實成熟,JcCAS1表現量隨之提升,進而構築JcCAS1-RNAi之載體進行轉殖,期望能得到無毒之痲瘋樹轉殖品系,目前已有兩株轉殖株,生長狀態良好。zh_TW
dc.description.abstractJatropha curcas L. is one of the best candidates for biodiesel production owing to high oil content of seeds. However, there are several disadvantages, such as low seed yields and phorbol esters toxicity of seed cake for feedstuff use. Previous studies indicated that cytokinin spraying was able to promote cell division, repressed apical dominance and led to increase seed yield of J. curcas. Our preliminary study revealed that exogenous application of 6-benzyladenine on inflorescence caused phenotypical changes of numerous flowers and higher seed yield. Previous studies have shown that ISOPENTENYLTRANSFERASE and CYTOKININ OXIDASE were two genes playing the major roles in controlling endogenous cytokinin level and seed yield in plants. In order to increase endogenous cytokinin level in J. curcas, we have constructed CKX5-RNAi and 35S::JcIPT1 vectors based on the spatial expression profile of JcIPTs and JcCKXs and transformed to J. curcas mediated by A. tumefaciens. Data revealed the JcIPT1 expression level in 35S::JcIPT1 transgenic line 15 is much higher than empty-vector transformed J. curcas. The 35S::JcIPT1 transgenic line 1 has higher cytokinin level than empty-vector transformed J. curcas. In parallel, the seed detoxification by engineering JcCAS1-RNAi is in progress. Casbene synthases (CASs) catalyze the first step of phorbol ester (PE) biosynthesis. PEs are the main toxic compounds in J. curcas. Our spatial expression profile of JcCAS1 indicated that JcCAS1 had higher expression level in roots and germination seeds but did not express in leaves. The expression level of JcCAS1 increased towards fruit maturity. Thus far two transgenic lines were obtained.en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:36:17Z (GMT). No. of bitstreams: 1
ntu-102-R00b42001-1.pdf: 5414545 bytes, checksum: 6b2a09791ce32544f73d3208d36741d8 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員審定書………………………………………………………………………....i
誌謝……………………………………………………………………………………...ii
中文摘要………………………………………………………………………………..iii
英文摘要……………………………………………………………………….……iv
檢索表………………………………………………………………………………….v
目錄……………………………………………………………………………………...1
圖表目錄………………………………………………………………………………3
附圖表目錄……………………………………………………………………………4
第一章 前言
第一節 痲瘋樹生物特性介紹…………………………………………………….5
第二節 生質能源之開發與潛力……………………………………………….6
第三節 痲瘋樹之基因轉殖……………………………………………………….8
第四節 細胞分裂素 (Cytokinins) 之生合成調控機制………………………...11
第五節 痲瘋樹中主要毒素佛波酯……………….……………………………..13
第六節 本論文研究方向……………………………………………….…...14
第二章 材料與方法
第一節 痲瘋樹處理BA (6-benzyladenine)……………………………………...16
第二節 載體的構築…………….......……………………………………………16
第三節 痲瘋樹再生系統效率之提升……………………..……………………27
第四節 轉殖系統流程…………………………………………………………...29
第五節 轉殖株鑑定及基因表現量分析………………….…………….……...31
第六節 痲瘋樹內生性細胞分裂素含量檢測…………...………………………38
第七節 痲瘋樹佛波酯之含量分析…………………………………………...…40
第三章 結果
第一部分 分析細胞分裂素影響痲瘋樹影響產量之調控機制
第一節 外加細胞分裂素對於痲瘋樹產量之影響……………….…………..…42
第二節 細胞分裂素相關基因在痲瘋樹不同器官表現情形..…..….……….….43
第三節 含細胞分裂素相關基因之載體的構築………………………….…...44
第四節 提升痲瘋樹轉殖系統之效率…………………….....……………….….45
第五節 提升痲瘋樹轉殖株再生之效率…………………………….…………..46
第六節 痲瘋樹轉植株之馴化與定植…………………………………………...48
第七節 痲瘋樹轉殖不定芽及轉殖株初步鑑定…………….………………...48
第八節 痲瘋樹轉殖不定芽細胞分裂素含量.…………………………………..49
第二部分 移除痲瘋樹內生性之毒素佛波酯
第九節 種子中佛波酯含量……………………………………………………...50
第十節 佛波酯生合成基因在痲瘋樹器官之表現情形……………………….. 50
第十一節 構築降低蓖麻烯合成酶基因表現之載體及鑑定…….…….....…..51
第十二節 痲瘋樹轉殖現況……………………………………………………...51
第四章 討論
第一節 載體中啟動子之選擇………………………………………………...52
第二節 痲瘋樹轉殖株發根測試…………………………..………...………...52
第三節 痲瘋樹中佛波酯之生合成…………...…………………………………55
第四節 未來展望………………………………………………………………...56
參考文獻…………………………………………………………………………….…57
圖表…………………………………………………………………………………….63
附圖表………………………………………………………………………………….84
 
圖表目錄
圖一、施加BA後痲瘋樹生殖生長之形態……………….…...……..…………63
圖二、痲瘋樹不同器官中JcIPTs基因表現量分析.……………………………….64
圖三、阿拉伯芥AtIPT1及痲瘋樹JcIPT1胺基酸編碼比對………………………...65
圖四、痲瘋樹不同器官中JcCKXs基因表現量分析……….....………..….……….66
圖五、痲瘋樹四種JcCKX基因 (1、3、4及5) 之核苷酸編碼比對………………..67
圖六、35S::JcIPT1載體構築示意圖………………………………………………….68
圖七、JcCKX5-RNAi載體構築示意圖………………………..…….…………….69
圖八、痲瘋樹子葉經轉殖後在抗生素培養基中不同篩選時間的比較…….……70
圖九、痲瘋樹再生組織培養流程圖………...…………………………………………71
圖十、痲瘋樹轉植株根系外觀……………………………….…………………….....72
圖十一、痲瘋樹轉殖不定芽之鑑定………………………………………..………….73
圖十二、35S::JcIPT1痲瘋樹轉殖株之鑑定及基因表現量分析……………………..74
圖十三、痲瘋樹轉殖不定芽之細胞分裂素含量的濃度分析………………………..75
圖十四、痲瘋樹營養器官中蓖麻烯合成酶基因表現量分析……………………......76
圖十五、痲瘋樹不同階段果實中蓖麻烯合成酶基因表現量分析………………..77
圖十六、痲瘋樹五種JcCAS基因 (1-5) 之核苷酸編碼比對…….……………….78
圖十七、JcCAS1-RNAi載體構築示意圖…………………………………………….79
圖十八、JcCAS1-RNAi痲瘋樹轉殖株之鑑定…………..…………………………80
表一、不同比例賀爾蒙誘導根之能力……………………………………………….81
表二、不同誘導發根培養基之發根率及誘導時間…………………………………..82
表三、不同品種痲瘋樹種仁之佛波酯含量………………………………………….83

附圖表目錄
附圖一、痲瘋樹外觀…………………………………………………………………84
附圖二、植物體內細胞分裂素生合成途徑………………………………………….85
附圖三、植物體內雙萜類生合成途徑……………………………………………….86
附圖四、植物體內佛波酯生合成途徑………………………………………………..87
附圖五、痲瘋樹之基因轉殖流程示意圖……………………………………………..88
附圖六、pCR™8/GW/TOPOR 載體………………………………………………...89
附圖七、pK7GWIWG (I) 載體……………………………………………….……....90
附圖八、pCAMBIA 2300 載體………………………………………………………..91
附表一、不同比例賀爾蒙誘導子葉癒傷組織、不定芽及莖延長之能力…………..92
附表二、再生系統與轉殖系統所使用之培養基統整…………………...………..…..93
附表三、痲瘋樹有毒品種及無毒品種中有毒物質含量比較………………………..94
附表四、本研究所使用之引子序列總整理…………………………………………95
dc.language.isozh-TW
dc.title利用基因轉殖技術提升痲瘋樹內生細胞分裂素含量及去除痲瘋樹種子中佛波酯毒素之研究zh_TW
dc.titleEngineering cytokinin-related genes to enhance cytokinin level and using RNA interference-based gene silencing of CASBENE SYNTHASE 1 for seed detoxification in
Jatropha curcas L.
en
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee簡慶德,柯淳涵,常玉強,張英?
dc.subject.keyword痲瘋樹,產量,細胞分裂素,異戊烯基轉移?,細胞分裂素氧化?,轉殖系統,去毒,佛波酯,蓖麻烯合成?,zh_TW
dc.subject.keywordJatropha curcas L.,Cytokinins,6-benzyladenine,IPT,CKX,CAS,Seed yield,Detoxification,Transformation system,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2013-11-07
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
5.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved