Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58863
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任(Yuh-Renn Wu)
dc.contributor.authorChi-Kang Lien
dc.contributor.author李季剛zh_TW
dc.date.accessioned2021-06-16T08:35:23Z-
dc.date.available2014-01-27
dc.date.copyright2014-01-27
dc.date.issued2013
dc.date.submitted2013-11-22
dc.identifier.citation[1] Krames, M.R, “Status and prognosis for solid-state lighting technology.” Presentation
CM001 at CLEO Conference, Baltimore, Maryland, 2009.
[2] Y.-R.Wu, R. Shivaraman, K.-C.Wang, and J. S. Speck, “Analyzing the physical
properties of InGaN multiple quantum well light emitting diodes from nano
scale structure,” Appl. Phys. Lett., vol. 101, no. 8, p. 083505, 2012.
[3] M. Y. Katsuhiro Tomioka and T. Fukui, “Vertical In0.7Ga0.3As nanowire
surrounding-gate transistors with high-k gate dielectric on Si substrate,” in
IEDM Tech. Dig., 2011, pp. 33.3.1–33.3.4.
[4] L.-Y. Chen, C.-K. Li, J.-Y. Tan, L.-C. Huang, Y.-R. Wu, and J. J. Huang,
“On the efficiency decrease of the GaN light-emitting nanorod arrays,” IEEE
J. Quantum Electron., vol. 49, no. 2, pp. 224–231, 2013.
[5] J.-W. Yu, C.-K. Li, C.-Y. Chen, Y.-R. Wu, L.-J. Chou, and L.-H. Peng,
“Transport properties of gallium nitride nanowire metal-oxide-semiconductor
transistor,” Appl. Phys. Lett., vol. 99, no. 15, p. 152108, 2011.
[6] J.-W. Yu, P.-C. Yeh, S.-L. Wang, Y.-R. Wu, M.-H. Mao, H.-H. Lin, and L.-
H. Peng, “Short channel effects on gallium nitride/gallium oxide nanowire
transistors,” Appl. Phys. Lett., vol. 101, p. 183501, 2012.
[7] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for IIIV
compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, no. 11,
pp. 5815–5875, 2001.
[8] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science,
vol. 308, no. 5726, pp. 1274–1278, 2005.
[9] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and
M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,”
Appl. Phys. Lett., vol. 91, no. 14, p. 141101, 2007.
[10] K. T. Delaney, P. Rinke, and C. G. Van de Walle, “Auger recombination rates
in nitrides from first principles,” Appl. Phys. Lett., vol. 94, no. 19, p. 191109,
2009.
[11] J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct
measurement of Auger electrons emitted from a semiconductor light-emitting
diode under electrical Injection: Identification of the dominant mechanism for
efficiency droop,” Phys. Rev. Lett., vol. 110, no. 17, p. 177406, Apr. 2013.
[12] M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek,
and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,”
Appl. Phys. Lett., vol. 91, no. 18, p. 183507, 2007.
[13] X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis,
T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector
for reduction of electron overflow in InGaN light emitting diodes,” Appl.
Phys. Lett., vol. 97, no. 3, p. 031110, 2010.
[14] D. S. Meyaard, G.-B. Lin, J. Cho, E. F. Schubert, H. Shim, S.-H. Han, M.-H.
Kim, C. Sone, and Y. S. Kim, “Identifying the cause of the efficiency droop in
GaInN light-emitting diodes by correlating the onset of high injection with the
onset of the efficiency droop,” Appl. Phys. Lett., vol. 102, no. 25, p. 251114,
Jun. 2013.
[15] D. Watson-Parris, M. J. Godfrey, P. Dawson, R. A. Oliver, M. J. Galtrey,
M. J. Kappers, and C. J. Humphreys, “Carrier localization mechanisms in InxGa1−xN/GaN quantum wells,” Phys. Rev. B, vol. 83, no. 11, p. 115321,
2011.
[16] X. Ni, Q. Fan, R. Shimada, U. Oezguer, and H. Morkoc, “Reduction of efficiency
droop in InGaN light emitting diodes by coupled quantum wells,” Appl.
Phys. Lett., vol. 93, no. 17, p. 171113, 2008.
[17] E. F. Schubert, Light-Emitting Diodes. Cambridge, 2006.
[18] J. Piprek, “Efficiency droop in nitride-based light-emitting diodes,” Phys. Stat.
Sol. (A), vol. 207, no. 10, pp. 2217–2225, 2010.
[19] L. De Michielis, K. E. Moselund, L. Selmi, and A. M. Ionescu, “Corner effect
and local volume inversion in SiNW FETs,” IEEE Trans. Nanotechnol, vol. 10,
no. 4, pp. 810–816, 2011.
[20] P. T. Blanchard, K. A. Bertness, T. E. Harvey, A. W. Sanders, N. A. Sanford,
S. M. George, and D. Seghete, “MOSFETs made from GaN nanowires with
fully conformal cylindrical gates,” IEEE Trans. Nanotechnol, vol. 11, no. 3,
pp. 479–482, 2012.
[21] A. D. Franklin, M. Luisier, S.-J. Han, G. Tulevski, C. M. Breslin, L. Gignac,
M. S. Lundstrom, and W. Haensch, “Sub-10 nm carbon nanotube transistor,”
Nano Lett., vol. 12, no. 2, pp. 758–762, 2012.
[22] W. Lu, P. Xie, and C. M. Lieber, “Nanowire transistor performance limits and
applications,” IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 2859–2876,
2008.
[23] M. J. Gilbert and S. K. Banerjee, “Ballistic to diffusive crossover in III-V
nanowire transistors,” IEEE Trans. Electron Devices, vol. 54, no. 4, pp. 645–
653, 2007.
[24] B. Yu, L. Wang, Y. Yuan, P. A. Asbeck, and Y. Taur, “Scaling of nanowire
transistors,” IEEE Trans. Electron Devices, vol. 55, no. 11, pp. 2846–2858,
2008.
[25] T. Dutta, Q. Rafhay, R. Clerc, J. Lacord, S. Monfray, G. Pananakakis, F.
Boeuf and G. Ghibaudo, “Origins of the short channel effects increase in III-V
nMOSFET technologies,” in IEDM Tech. Dig., 2012, pp. 25–28.
[26] G. Koley and M. G. Spencer, “On the origin of the two-dimensional electron
gas at the AlGaN/GaN heterostructure interface,” Appl. Phys. Lett., vol. 86,
no. 4, p. 042107, 2005.
[27] H. Rao and G. Bosman, “Device reliability study of high gate electric field
effects in AlGaN/GaN high electron mobility transistors using low frequency
noise spectroscopy,” J. Appl. Phys., vol. 108, no. 5, p. 053707, 2010.
[28] G. H. Jessen, J. Fitch, Robert C., J. K. Gillespie, G. Via, A. Crespo, D. Langley,
D. J. Denninghoff, J. Trejo, Manuel, and E. R. Heller, “Short-channel
effect limitations on high-frequency operation of AlGaN/GaN HEMTs for TGate
devices,” IEEE Trans. Electron Devices, vol. 54, no. 10, pp. 2589–2597,
2007.
[29] D. S. Lee, B. Lu, M. Azize, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios,
“Impact of GaN channel scaling in InAlN/GaN HEMTs,” in IEDM Tech. Dig.,
2011, pp. 19.2.1–19.2.4.
[30] Y. Yue, Z. Hu, J. Guo, B. Sensale-Rodriguez, G. Li, R. Wang, F. Faria,
T. Fang, B. Song, X. Gao, S. Guo, T. Kosel, G. Snider, P. Fay, D. Jena, and
H. Xing, “InAlN/AlN/GaN HEMTs with regrown ohmic contacts and f(T) of
370 GHz,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 988–990, Jul. 2012.
[31] J. Liu, Y. G. Zhou, J. Zhu, K. M. Lau, and K. J. Chen, “AlGaN/GaN/In-
GaN/GaN DH-HEMTs with an InGaN notch for enhanced carrier confinement,”
IEEE Electron Device Lett., vol. 27, no. 1, pp. 10–12, 2006.
[32] D. S. Lee, X. Gao, S. Guo, and T. Palacios, “InAlN/GaN HEMTs with AlGaN
back barriers,” IEEE Electron Device Lett., vol. 32, no. 5, pp. 617–619, May
2011.
[33] Y. Cao and D. Jena, “High-mobility window for two-dimensional electron gases
at ultrathin AlN/GaN heterojunctions,” Appl. Phys. Lett., vol. 90, no. 18, p.
182112, 2007.
[34] O. Laboutin, Y. Cao, W. Johnson, R. Wang, G. Li, D. Jena, and H. Xing,
“InGaN channel high electron mobility transistor structures grown by metal
organic chemical vapor deposition,” Appl. Phys. Lett., vol. 100, no. 12, p.
121909, Mar. 2012.
[35] G. Li, R. Wang, J. Guo, J. Verma, Z. Hu, Y. Yue, F. Faria, Y. Cao, M. Kelly,
T. Kosel, H. Xing, and D. Jena, “Ultrathin body GaN-on-insulator quantum
well FETs with regrown ohmic contacts,” IEEE Electron Device Lett., vol. 33,
no. 5, pp. 661–663, May 2012.
[36] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed-gate
structure approach toward normally off high-voltage AlGaN/GaN HEMT for
power electronics applications,” IEEE Trans. Electron Devices, vol. 53, no. 2,
pp. 356–362, 2006.
[37] D. Xu, X. Yang, W. M. T. Kong, P. Seekell, K. Louie, L. M. M. Pleasant,
L. Mohnkern, D. M. Dugas, K. Chu, H. F. Karimy, K. H. G. Duh, P. M. Smith,
and P. C. Chao, “Gate-length scaling of ultrashort metamorphic high-electron
mobility transistors with asymmetrically recessed gate contacts for millimeterand
submillimeter-wave applications,” IEEE Trans. Electron Devices, vol. 58,
no. 5, pp. 1408–1417, 2011.
[38] D.-S. Kim, K.-S. Im, H.-S. Kang, K.-W. Kim, S.-B. Bae, J.-K. Mun, E.-S.
Nam, and J.-H. Lee, “Normally-off AlGaN/GaN metal-orxide-semiconductor
heterostructure field-effect transistor with recessed gate and p-GaN backbarrier,”
Jpn. J. Appl. Phys., vol. 51, no. 3, p. 034101, 2012.
[39] P. T. Blanchard, K. A. Bertness, T. E. Harvey, L.M.Mansfield, A. W. Sanders,
and N. A. Sanford, “MESFETs made from individual GaN nanowires,” IEEE
Trans. Electron Devices, vol. 7, no. 6, pp. 760–765, 2008.
[40] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. John Wiley &
Sons. Inc., 2006.
[41] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Device. Cambridge
University Press, 1998.
[42] C.-K. Li, “Electronic and Thermal Analysis of High Power InGaN/GaN light
Emitting Diodes with Finite Element Methods,” Master’s thesis, National
Taiwan University, 2009.
[43] J. Jin, The Finite Element Method in Electromagnetics. John Wiley & Sons.
Inc., 2002.
[44] C. Geuzaine and J. F. Remacle, “Gmsh: A 3-D finite element mesh generator
with built-in pre- and post-processing facilities,” Int. J. Numer. Meth. Eng.,
vol. 79, no. 11, pp. 1309–1331, 2009.
[45] J. T. Oden, Finite Elements of Nolinear Continua. New York: McGraw-Hill,
1972.
[46] J. C. H. Darrell W. Pepper, The Finite Element Method, Basic Concept and
Applications. Taylor and Francis, 2005.
[47] S. G. Mikhlin, Variational Methods in Mathematical Physics. New York:
Macmillan, 1964.
[48] O. Schenk, K. Gartner, W. Fichtner, and A. Stricker, “PARDISO: A highperformance
serial and parallel sparse linear solver in semiconductor device
simulation,” Future Generation Computer Systems, vol. 18, no. 1, pp. 69–78,
2001.
[49] M. Lundstrom, Fundamentals of Carrier Transport. Cambridge University
Press, 2009.
[50] D. Vasileska and S. M. Goodnick, Computational Electronics. Morgan &
Claypool publishers, 2006.
[51] Y. A. Cengel, Heat Transfer, A Practical Approach. McGraw-Hill, 2004.
[52] I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and J. Robert
F. Karlicek, “InGaN blue light-emitting diodes with optimized n-GaN layer,”
vol. 3621, no. 1. Proc. SPIE, 1999, pp. 28–36.
[53] X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting
diodes on insulating substrates,” J. Appl. Phys., vol. 90, no. 8, pp. 4191–4195,
2001.
[54] H. Kim, S. J. Park, and H. Hwang, “Effects of current spreading on the performance
of GaN-based light-emitting diodes,” IEEE Trans. Electron Devices,
vol. 48, no. 6, pp. 1065–1069, Jun. 2001.
[55] S. Hwang and J. Shim, “A method for current spreading analysis and electrode
pattern design in light-emitting diodes,” IEEE Trans. Electron Devices,
vol. 55, no. 5, pp. 1123–1128, 2008.
[56] M. Maier, K. Koehler, M. Kunzer, W. Pletschen, and J. Wagner, “Reduced
nonthermal rollover of wide-well GaInN light-emitting diodes,” Appl. Phys.
Lett., vol. 94, no. 4, p. 041103, Jan. 2009.
[57] Y. L. Li, Y. R. Huang, and Y. H. Lai, “Investigation of efficiency droop behaviors
of InGaN/GaN multiple-quantum-well LEDs with various well thicknesses,”
IEEE J. Sel. Top. Quantum Electron., vol. 15, no. 4, pp. 1128–1131,
Jul. 2009.
[58] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon,
S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaIn-
N/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency
droop,” Appl. Phys. Lett., vol. 93, no. 4, p. 041102, 2008.
[59] S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R. D. Dupuis,
A. M. Fischer, and F. A. Ponce, “Improvement of peak quantum efficiency
and efficiency droop in III-nitride visible light-emitting diodes with an InAlN
electron-blocking layer,” Appl. Phys. Lett., vol. 96, no. 22, p. 221105, May
2010.
[60] C. H. Jang, J. K. Sheu, C. M. Tsai, S. J. Chang, W. C. Lai, M. L. Lee,
T. K. Ko, C. F. Shen, and S. C. Shei, “Improved performance of GaN-based
blue LEDs with the InGaN insertion layer between the MQW active layer and
the n-GaN cladding layer,” IEEE J. Quantum Electron., vol. 46, no. 4, pp.
513–517, 2010.
[61] H. H. Huang and Y. R. Wu, “Study of polarization properties of light emitted
from a-plane InGaN/GaN quantum well-based light emitting diodes,” J. Appl.
Phys., vol. 106, no. 2, p. 023106, 2009.
[62] R. M. Farrell, P. S. Hsu, D. A. Haeger, K. Fujito, S. P. DenBaars, J. S.
Speck, and S. Nakamura, “Low-threshold-current-density AlGaN-claddingfree
m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett., vol. 96, no. 23,
p. 231113, Jun. 2010.
[63] T. J. Prosa, P. H. Clifton, H. Zhong, A. Tyagi, R. Shivaraman, S. P. DenBaars,
S. Nakamura, and J. S. Speck, “Atom probe analysis of interfacial abruptness and clustering within a single InxGa1−xN quantum well device on semipolar
(10‾1‾1) GaN substrate,” Appl. Phys. Lett., vol. 98, no. 19, p. 191903, May 2011.
[64] H. Zhao, G. Liu, X.-H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn,
V. Dierolf, and N. Tansu, “Growths of staggered InGaN quantum wells lightemitting
diodes emitting at 520-525 nm employing graded growth-temperature
profile,” Appl. Phys. Lett., vol. 95, no. 6, p. 061104, Aug. 2009.
[65] H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu,
“Approaches for high internal quantum efficiency green InGaN light-emitting
diodes with large overlap quantum wells,” Opt. Express, vol. 19, no. 14, pp.
A991–A1007, Jul. 2011.
[66] S. Chhajed, W. Lee, J. Cho, E. F. Schubert, and J. K. Kim, “Strong light
extraction enhancement in GaInN light-emitting diodes by using self-organized
nanoscale patterning of p-type GaN,” Appl. Phys. Lett., vol. 98, no. 7, p.
071102, Feb. 2011.
[67] T. Ueda, M. Ishida, S. Tamura, Y. Fujimoto, M. Yuri, T. Saito, and D. Ueda,
“Vertical InGaN-based blue light emitting diode with plated metal base fabricated
using laser lift-off technique,” Phys. Stat. Sol. (C), vol. 0, no. 7, pp.
2219–2222, 2003.
[68] L. Zhou, J. E. Epler, M. R. Krames, W. Goetz, M. Gherasimova, Z. Ren,
J. Han, M. Kneissl, and N. M. Johnson, “Vertical injection thin-film Al-
GaN/AlGaN multiple-quantum-well deep ultraviolet light-emitting diodes,”
Appl. Phys. Lett., vol. 89, no. 24, p. 241113, Dec. 2006.
[69] S. J. Wang, S. L. Chen, K. M. Uang, W. C. Lee, T. M. Chen, C. H. Chen,
and B. W. Liou, “The use of transparent conducting indium-zinc oxide film as
a current spreading layer for vertical-structured high-power GaN-based lightemitting
diodes,” IEEE Photon. Technol. Lett., vol. 18, no. 9-12, pp. 1146–
1148, 2006.
[70] T. M. Chen, S. J. Wang, K. M. Uang, H. Y. Kuo, C. C. Tsai, W. C. Lee, and
H. Kuan, “Current spreading and blocking designs for improving light output
power from the vertical-structured GaN-based light-emitting diodes,” IEEE
Photon. Technol. Lett., vol. 20, no. 9-12, pp. 703–705, 2008.
[71] V. Haerle, B. Hahn, S. Kaiser, A. Weimar, D. Eisert, S. Bader, A. Ploessl,
and F. Eberhard, “Light extraction technologies for high-efficiency GaInNLED
devices,” vol. 4996, no. 1. Proc. SPIE, 2003, pp. 133–138.
[72] Y. R.Wu, M. Singh, and J. Singh, “Sources of transconductance collapse in IIIV
nitrides - Consequences of velocity-field relations and source/gate design,”
IEEE Trans. Electron Devices, vol. 52, no. 6, pp. 1048–1054, Jun. 2005.
[73] J. Hader, J. V. Moloney, and S. W. Koch, “Density-activated defect recombination
as a possible explanation for the efficiency droop in GaN-based diodes,”
Appl. Phys. Lett., vol. 96, no. 22, pp. 21 106–21 106, May 2010.
[74] C. K. Li and Y. R. Wu, “Current spreading effect in vertical GaN/InGaN
LEDs,” vol. 7939, no. 1. Proc. SPIE, 2011, p. 79392K.
[75] T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, S. N. Yurkov, G. S.
Simin, and M. A. Khan, “Carrier mobility model for GaN,” Solid-State Electron.,
vol. 47, no. 1, pp. PII S0038–1101(02)00 256–3, Jan. 2003.
[76] M. Meneghini, N. Trivellin, G. Meneghesso, E. Zanoni, U. Zehnder, and
B. Hahn, “A combined electro-optical method for the determination of the
recombination parameters in InGaN-based light-emitting diodes,” J. Appl.
Phys., vol. 106, no. 11, p. 114508, Dec. 2009.
[77] M. V. Bogdanov, K. A. Bulashevich, I. Y. Evstratov, A. I. Zhmakin, and
S. Y. Karpov, “Coupled modeling of current spreading, thermal effects and
light extraction in III-nitride light-emitting diodes,” Semicond. Sci. Technol.,
vol. 23, no. 12, p. 125023, 2008.
[78] H. Y. Ryu and J. I. Shim, “Effect of current spreading on the efficiency droop
of InGaN light-emitting diodes,” Opt. Express, vol. 19, no. 4, pp. 2886–2894,
Feb 2011.
[79] L. I. Lin, Y. R. Wu, and J. Singh, “A study of the role of dislocation density,
indium composition on the radiative efficiency in InGaN/GaN polar and nonpolar
light-emitting diodes using drift-diffusion coupled with a Monte Carlo
method,” J. Appl. Phys., vol. 108, no. 12, p. 124508, Dec. 2010.
[80] S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, D. Y. Noh,
D.-J. Kim, Y. C. Kim, and S.-J. Park, “Effect of electron blocking layer on
efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes,”
Appl. Phys. Lett., vol. 94, no. 23, p. 231123, 2009.
[81] Y. Kawaguchi, C.-Y. Huang, Y.-R. Wu, Q. Yan, C.-C. Pan, Y. Zhao,
S. Tanaka, K. Fujito, D. Feezell, C. G. Van de Walle, S. P. DenBaars, and
S. Nakamura, “Influence of polarity on carrier transport in semipolar (20‾2‾1)
and (20‾21) multiple-quantum-well light-emitting diodes,” Appl. Phys. Lett.,
vol. 100, no. 23, p. 231110, 2012.
[82] C.-K. Li and Y.-R. Wu, “Study on the current spreading effect and light
extraction enhancement of vertical GaN/InGaN LEDs,” IEEE Trans. Electron
Devices, vol. 59, no. 2, pp. 400–407, 2012.
[83] V. Fiorentini, F. Bernardini, and O. Ambacher, “Evidence for nonlinear
macroscopic polarization in III-V nitride alloy heterostructures,” Appl. Phys.
Lett., vol. 80, no. 7, pp. 1204–1206, 2002.
[84] H. W. Jang and J. L. Lee, “Low-resistance and high-reflectance
Ni/Ag/Ru/Ni/Au ohmic contact on p-type GaN,” Appl. Phys. Lett., vol. 85,
no. 19, pp. 4421–4423, 2004.
[85] H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata,
Z. H. Kafafi, and D. B. Chrisey, “Electrical, optical, and structural properties
of indium-tin-oxide thin films for organic light-emitting devices,” J. Appl.
Phys., vol. 86, no. 11, pp. 6451–6461, 1999.
[86] H.-Y. Ryu, K.-S. Jeon, M.-G. Kang, Y. Choi, and J.-S. Lee, “Dependence of
efficiencies in GaN-based vertical blue light-emitting diodes on the thickness
and doping concentration of the n-GaN layer,” Opt. Express, vol. 21, no. S1,
pp. A190–A200, 2013.
[87] E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, “Indirect
Auger recombination as a cause of efficiency droop in nitride light-emitting
diodes,” Appl. Phys. Lett., vol. 98, no. 16, p. 161107, 2011.
[88] G. H. B. Thompson, Physics of Semiconductor Laser Devices. Wiley, New
York, 1980.
[89] H. Kim, J. Cho, J. W. Lee, S. Yoon, H. Kim, C. Sone, Y. Park, and T.-Y.
Seong, “Consideration of the actual current-spreading length of GaN-based
light-emitting diodes for high-efficiency design,” IEEE J. Quantum Electron.,
vol. 43, no. 7-8, pp. 625–632, 2007.
[90] S. Huang, B. Fan, Z. Chen, Z. Zheng, H. Luo, Z. Wu, G. Wang, and H. Jiang,
“Lateral current spreading effect on the efficiency droop in GaN based lightemitting
diodes,” J. Display Technol., vol. 9, no. 4, pp. 266–271, 2013.
[91] S. Li and A. Waag, “GaN based nanorods for solid state lighting,” J. Appl.
Phys., vol. 111, no. 7, p. 071101, 2012.
[92] S. Li, X. Wang, S. Fuendling, M. Erenburg, J. Ledig, J. Wei, H. H. Wehmann,
A. Waag, W. Bergbauer, M. Mandl, M. Strassburg, A. Trampert, U. Jahn,
H. Riechert, H. Joenen, and A. Hangleiter, “Nitrogen-polar core-shell GaN light-emitting diodes grown by selective area metalorganic vapor phase epitaxy,”
Appl. Phys. Lett., vol. 101, no. 3, p. 032103, 2012.
[93] Y. R. Wu, C. Chiu, C. Y. Chang, P. Yu, and H.-C. Kuo, “Size-dependent
strain relaxation and optical characteristics of InGaN/GaN nanorod LEDs,”
IEEE J. Sel. Top. Quantum Electron., vol. 15, pp. 1226–1233, 2009.
[94] R. Colby, Z. Liang, I. H. Wildeson, D. A. Ewoldt, T. D. Sands, R. E. Garcia,
and E. A. Stach, “Dislocation filtering in GaN nanostructures,” Nano Lett.,
vol. 10, no. 5, pp. 1568–1573, 2010.
[95] Y.-S. Chen, W.-Y. Shiao, T.-Y. Tang, W.-M. Chang, C.-H. Liao, C.-H. Lin,
K.-C. Shen, C. C. Yang, M.-C. Hsu, J.-H. Yeh, and T.-C. Hsu, “Threading
dislocation evolution in patterned GaN nanocolumn growth and coalescence
overgrowth,” J. Appl. Phys., vol. 106, no. 2, p. 023521, 2009.
[96] T.-Y. Tang, C.-H. Lin, Y.-S. Chen, W.-Y. Shiao, W.-M. Chang, C.-H. Liao,
K.-C. Shen, C.-C. Yang, M.-C. Hsu, J.-H. Yeh, and T.-C. Hsu, “Nitride
nanocolumns for the development of light-emitting diode,” IEEE Trans. Electron
Devices, vol. 57, no. 1, pp. 71–78, 2010.
[97] A.-L. Bavencove, D. Salomon, M. Lafossas, B. Martin, A. Dussaigne, F. Levy,
B. Andre and, P. Ferret, C. Durand, J. Eymery, L. S. Dang, and P. Gilet,
“Light emitting diodes based on GaN core/shell wires grown by MOVPE on
n-type Si substrate,” Electron. Lett., vol. 47, no. 13, pp. 765 –767, 2011.
[98] R. Koester, J.-S. Hwang, D. Salomon, X. Chen, C. Bougerol, J.-P. Barnes,
D. L. S. Dang, L. Rigutti, A. d. L. Bugallo, G. Jacopin, M. Tchernycheva,
C. Durand, and J. Eymery, “M-plane core-shell InGaN/GaN multiplequantum-
wells on GaN wires for electroluminescent devices,” Nano Lett.,
vol. 11, no. 11, pp. 4839–4845, 2011.
[99] T.-W. Yeh, Y.-T. Lin, L. S. Stewart, P. D. Dapkus, R. Sarkissian, J. D.
O’Brien, B. Ahn, and S. R. Nutt, “InGaN/GaN multiple quantum wells grown
on nonpolar facets of vertical GaN nanorod arrays,” Nano Lett., vol. 12, no. 6,
pp. 3257–3262, 2012.
[100] K‥olper, C., Sabathil, M., R‥omer, F., Mandl, M., Strassburg, M. and Witzigmann,
B., “Core-shell InGaN nanorod light emitting diodes: Electronic and
optical device properties,” Phys. Stat. Sol. (A), vol. 209, pp. 2304–2312, 2012.
[101] Friedhard R‥omer, Marcus Deppner, Zhelio Andreev, Christopher K‥olper,
Matthias Sabathil, Martin Strassburg, Johannes Ledig, Shunfeng Li, Andreas
Waag, Bernd Witzigmann, “Luminescence and efficiency optimization
of InGaN/GaN core-shell nanowire LEDs by numerical modelling,” vol. 8255.
Proc. SPIE, 2012, pp. 82 550H–1.
[102] B. Connors, M. Povolotskyi, R. Hicks, Benjamin Klein, “Simulation and design
of core-shell GaN nanowire LEDs,” vol. 7597. Proc. SPIE, 2010, pp. 75 970B–
1.
[103] Deppner, M. and R‥omer, F. and Witzigmann, B. and Ledig, J. and Neumann,
R. and Waag, A. and Bergbauer, W. and Strassburg, M., “Computational
study of carrier injection in III-nitride core-shell nanowire-LEDs,” in Semiconductor
Conference Dresden (SCD), 2011, pp. 1–4.
[104] C. Mazuir and W. V. Schoenfeld, “Modeling of nitride based core/multishell
nanowire light emitting diodes,” J. Nanophotonics, vol. 1, p. 013503, 2007.
[105] F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, and C. M. Lieber, “Core/Multishell
nanowire heterostructures as multicolor, high-efficiency light-emitting diodes,”
Nano Lett., vol. 5, no. 11, pp. 2287–2291, 2005.
[106] T. Kuykendall, S. Aloni, I. Jen-La Plante, and T. Mokari, “Growth of
GaN@InGaN core-shell and Au-GaN hybrid nanostructures for energy applications,”
Int. J. Photoenergy, p. 767951, 2009.
[107] T. Wunderer, M. Feneberg, F. Lipski, J. Wang, R. A. R. Leute, S. Schwaiger,
K. Thonke, A. Chuvilin, U. Kaiser, S. Metzner, F. Bertram, J. Christen, G. J.
Beirne, M. Jetter, P. Michler, L. Schade, C. Vierheilig, U. T. Schwarz, A. D.
Draeger, A. Hangleiter, and F. Scholz, “Three-dimensional GaN for semipolar
light emitters,” Phys. Status Solidi B, vol. 248, no. 3, pp. 549–560, 2011.
[108] O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff,
M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F.
Eastman, “Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum
well structures,” J. Phys.: Condens. Matter, vol. 14, no. 13, p. 3399, 2002.
[109] P. Senanayake, C.-H. Hung, A. Farrell, D. A. Ramirez, J. Shapiro, C.-K. Li,
Y.-R. Wu, M. M. Hayat, and D. L. Huffaker, “Thin 3D multiplication regions
in plasmonically enhanced nanopillar avalanche detectors,” Nano Lett., vol. 12,
no. 12, pp. 6448–6452, 2012.
[110] G.-B. Lin, D. Meyaard, J. Cho, E. F. Schubert, H. Shim, and C. Sone, “Analytic
model for the efficiency droop in semiconductors with asymmetric carriertransport
properties based on drift-induced reduction of injection efficiency,”
Appl. Phys. Lett., vol. 100, no. 16, p. 161106, 2012.
[111] Q. Li and G. T. Wang, “Strain influenced indium composition distribution
in GaN/InGaN core-shell nanowires,” Appl. Phys. Lett., vol. 97, no. 18, p.
181107, 2010.
[112] C.-H. Liao, W.-M. Chang, H.-S. Chen, C.-Y. Chen, Y.-F. Yao, H.-T. Chen,
C.-Y. Su, S.-Y. Ting, Y.-W. Kiang, and C. C. Yang, “Geometry and composition
comparisons between c-plane disc-like and m-plane core-shell InGaN/-GaN quantum wells in a nitride nanorod,” Opt. Express, vol. 20, no. 14, pp.
15 859–15 871, 2012.
[113] J.-W. Yu, Y.-R. Wu, J.-J. Huang, and L.-H. Peng, “100GHz depletion-mode
Ga2O3/GaN single nanowire MOSFET by photo-enhanced chemical oxidation
method,” in IEDM Tech. Dig., 2010, pp. 30.3.1–30.3.4.
[114] Y. R. Wu, M. Singh, and J. Singh, “Device scaling physics and channel velocities
in AlGaN/GaN HFETs: Velocities and effective gate length,” IEEE
Trans. Electron Devices, vol. 53, no. 4, pp. 588–593, 2006.
[115] M. T. Ahmadi, H. H. Lau, R. Ismail, and V. K. Arora, “Current-voltage
characteristics of a silicon nanowire transistor,” Microelectron. J., vol. 40,
no. 3, pp. 547–549, 2009.
[116] Mohammad Taghi Ahmadi, Michael L. P. Tan, Razali Ismail, and Vijay K.
Arora, “The high-field drift velocity in degenerately-doped silicon nanowires,”
Int. J. Nanotechnol., vol. 6, pp. 601–617, 2009.
[117] T. Wang, L. Lou, and C. Lee, “A junctionless gate-all-around silicon nanowire
FET of high linearity and its potential applications,” IEEE Electron Device
Lett., vol. 34, no. 4, pp. 478–480, 2013.
[118] V. K. Arora, D. C. Y. Chek, M. L. P. Tan, and A. M. Hashim, “Transition
of equilibrium stochastic to unidirectional velocity vectors in a nanowire subjected
to a towering electric field,” J. Appl. Phys., vol. 108, no. 11, p. 114314,
2010.
[119] V. K. Arora and M. B. Das, “Effect of electric-field-induced mobility degradation
on the velocity distribution in a sub-μm-length channel of InGaAs/Al-
GaAs heterojunction MODFET,” Semicond. Sci. Technol., vol. 5, no. 9, pp.
967–973, 1990.
120] Y. Lee, K. Kakushima, K. Shiraishi, K. Natori, and H. Iwai, “Size-dependent
properties of ballistic silicon nanowire field effect transistors,” J. Appl. Phys.,
vol. 107, no. 11, p. 113705, 2010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58863-
dc.description.abstract在本篇論文裏,第一章我們會先介紹為什麼要探討氮化鎵元件傳播特性的動機。在第二章,有限元素法解帕松和漂移-擴散方程式的演算法會被詳細的推導,然後利用這些方程式來探討元件的電性。此外,蒙地卡羅光軌跡技術和熱傳導方程式也會一併介紹。本篇論文旨在結合電、光、和熱三種模擬來準確的模擬半導體元件。第三章到第五章的內容為探討不同型態的發光二極體,提供完整的分析給元件設計者。在第六章,氧化鎵/氮化鎵奈米線電晶體會被拿來探討尺度原則和相關的短通道效應。
第三章主要為分析垂直發光二極體的電流擴佈和光取出效率。我們測試了不同的電極配置,找出電流擴佈的最佳化來抑制量子井裏平均載子濃度和減少在高電流注入下時的效率衰退。藉由在不同情況下光電轉換效率的計算討論,可以得到如何獲得高能量轉換效率的設計準則。在第四章,分成上出光式和下出光式的水平發光二極體來探討。我們同時採用模擬結果和電路模型來分析電流擴佈,結果顯示,均勻的透明導電極沒有辦法真的讓電流擴佈非常的均勻。因此,調變透明導電極會被測試來進一步改變電流擴佈的效果。在不同電流注入時,產生的電流擁擠效應和電流路徑改變也會一起討論。此外,我們會比較下出光式發光二極體和上出光式發光二極體的電流擴佈和光取出效率,並討論下出光式發光二極體的優點。發光二極體在高電流下的衰退效應的分析結果會被用來驗證我們的想法,而本章節主要在提供如何實現高效能水平式發光二極體的完整分析和概念。
在第五章,內容主要是核殼型多量子井奈米線發光二極體的研究結果。因為核殼型奈米線發光二極體比傳統的平面發光二極體有更大的主動區,以及在非極性量子井裡較強的複合,所以核殼型奈米線發光二極體會表現出較弱的衰退效應。電流擴佈效應也被計算來確定載子在核殼型奈米線發光二極體側壁的分布,結果顯示,藉由增加奈米線的高度得到更大的深縱比,可以增加非極性主動區的體積,使其在相同的電流密度下,電子密度相對較低,以減少衰退效應。所以讓電流擴佈長度超過奈米線的高度來有效利用非極性量子井是很重要的,因此,適當的透明導電層可能是必要的。此外,我們對每個奈米線之間,不同間距的影響和其相對應的奈米線直徑提出了討論。並且,側壁不均勻的銦濃度分布和不同電流注入情況下的電流擁擠效應會在此章節的最後作分析。在第六章,三維尺度的有限元素法程式被用來研究氧化鎵/氮化鎵奈米線電晶體的性能。我們提供了模擬結果來與50奈米閘極長度的奈米線實驗結果作比較,兩者也表現出良好的一致性。更短的閘極長度(<50 奈米)也被拿來研究其性能和縮放的問題,以及對短通道效應進行了分析。在有更好的環繞閘極設計和凹陷閘極的方法,20奈米閘極長度的最佳條件會在本論文中探討。
zh_TW
dc.description.abstractIn this dissertation, we will introduce the motivation in studying transport properties
of GaN-based devices at first in Chapter 1. In Chapter 2, the algorithm for a fully
self-consistent model that solves Poisson and drift-diffusion equations by the finite
element method to investigate device electrical properties was derived in detail. In
addition, the Monte Carlo ray-tracing technique and heat conduction equation were
introduced as well. The goal of this dissertation is combining the electrical, optical,
and thermal aspects to model semiconductor devices precisely. In Chapter 3-5, various
types of light emitting diodes (LEDs) were studied to give a thorough analysis
for designers. In Chapter 6, the Ga2O3/GaN nanowire transistor was examined to
discuss the scaling rules and related short-channel effect.
In Chapter 3, the current spreading effect and light extraction efficiency (LEE)
of vertical LEDs were analyzed. We tested different electrode configurations in the
vertical LED to optimize the current spreading effect, which in turn suppresses
the average carrier density in the quantum well and reduces the efficiency droop
under high injection conditions. The wall-plug-efficiency in overall cases to identify
the design rules for higher power conversion efficiency will be discussed as well. In
Chapter 4, lateral LEDs were investigated with top and bottom emission conditions.
The simulation results and circuit model were both used, which indicate that a
uniform transparent conducting layer (TCL) cannot achieve a very uniform current
spreading effect. Thus, modulating the TCL is tested to further improve the current
spreading effect. Different current injecting conditions were discussed to observe
the variation of the current flow path and the emerged current crowding effect. In
addition, we will discuss the advantage of bottom emission LEDs by addressing
the current spreading effect and LEE compared to top emission LEDs. The droop
effect was also examined to verify our discussion. A thorough analysis provides deep
insights for achieving high efficiency lateral LEDs in this chapter.
In Chapter 5, the findings of investigating core-shell multiple quantum well
nanowire LEDs were presented. The core-shell nanowire LED showed a weaker
droop effect than that of conventional planar LEDs because of a larger active area
and stronger recombination in nonpolar quantum wells (QWs). The current spreading
effect was examined to determine the carrier distribution at the sidewall of coreshell
nanowire LEDs. The results revealed that a larger aspect ratio by increasing
the nanowire height could increase the nonpolar-active area volume and reduce the
droop effect at the same current density. Making the current spreading length exceed
a greater nanowire height to utilize the nonpolar QW effectively is critical. Therefore,
an appropriate TCL might be necessary. In addition, we presented a discussion
on the influences of the spacing between each nanowire on corresponding nanowire
diameters. Moreover, the non-uniform indium distribution along the sidewall and
different current injections were analyzed for the current crowding effect in the end
of Chapter 5. In Chapter 6, a three-dimensional finite element solver was applied
to investigate the performance of Ga2O3/GaN nanowire transistors. We provided
the simulation results to compare with experimental nanowire results of 50 nm gate
length, and they show good agreement. The performance of a shorter gate length
(<50 nm) was studied and scaling issues of the short-channel effect are analyzed.
With a better surrounding gate design and a recessed gate approach, the optimal
conditions for a 20 nm gate length were explored in this dissertation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:35:23Z (GMT). No. of bitstreams: 1
ntu-102-D99941007-1.pdf: 7239127 bytes, checksum: 3f6c9ed738065f27b2ecd246822e8bd7 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Physics and Technology Review of GaN-based LEDs . . . . . . . . . 2
1.3 Physics and Technology Review of GaN-based Nanowire Transistors . 8
1.4 Thesis Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Formalism of Simulation Models 12
2.1 Introduction of Finite Element Method . . . . . . . . . . . . . . . . . 14
2.2 Poisson and Drift-Diffusion Equation . . . . . . . . . . . . . . . . . . 20
2.3 Monte Carlo Ray Tracing Technique . . . . . . . . . . . . . . . . . . 22
2.4 Heat Conduction Equation . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Multi Functions with External Applied Module . . . . . . . . . . . . 24
3 Current Spreading Effect and Light Extraction Enhancement of
Vertical GaN/InGaN LEDs 28
3.1 Motivation of Studying Vertical LEDs . . . . . . . . . . . . . . . . . . 28
3.2 Parameters and SimulationModel . . . . . . . . . . . . . . . . . . . . 30
3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Current Spreading Effect in Lateral LEDs . . . . . . . . . . . 34
3.3.2 Current Spreading Effect in Vertical LEDs . . . . . . . . . . . 36
3.3.3 Investigation of Droop Effect for Lateral and Vertical LEDs . 38
3.3.4 Stripe-shaped N- and P-metal in Vertical LEDs . . . . . . . . 40
3.3.5 Stripe-shaped N-metal in Vertical LEDs . . . . . . . . . . . . 41
3.3.6 WPE Analysis with and without EBL . . . . . . . . . . . . . 44
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Optimization for Current Spreading Effect of Lateral GaN/InGaN
LEDs 49
4.1 Introduction of Lateral LEDs . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Parameters and SimulationModel . . . . . . . . . . . . . . . . . . . . 50
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Current Crowding Effect v.s. TCL . . . . . . . . . . . . . . . 53
4.3.2 CircuitModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.3 Optimized Current Spreading Effect by Stepped TCL . . . . . 61
4.3.4 BottomEmission LEDs . . . . . . . . . . . . . . . . . . . . . 61
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5 3D Study on the Efficiency of a Core-shell InGaN/GaN Multiple
Quantum Well Nanowire LEDs 67
5.1 Reviews of Core-shell Nanowire LEDs . . . . . . . . . . . . . . . . . . 67
5.2 Parameters and SimulationModel . . . . . . . . . . . . . . . . . . . . 70
5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.1 Aspect Ratio Analysis: Nanowire Height . . . . . . . . . . . . 72
5.3.2 Optimization of Current Spreading Effect by Use of TCL . . . 74
5.3.3 Comparison between Conventional Planar LEDs and Coreshell
Nanowire LEDs . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.4 Aspect Ratio Analysis: Nanowire Diameter . . . . . . . . . . . 77
5.3.5 Current Distribution under Different Current Densities . . . . 81
5.3.6 Non-uniform Indium Composition Distribution . . . . . . . . . 81
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6 Scaling Performance of Ga2O3/GaN Nanowire Field Effect Transistor
86
6.1 Parameters and SimulationModel . . . . . . . . . . . . . . . . . . . . 87
6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.1 AlGaN/GaN Planar HFET v.s. GaN Nanowire . . . . . . . . 94
6.2.2 Scaling Limitation of NW . . . . . . . . . . . . . . . . . . . . 95
6.2.3 WireWidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2.4 Recessed Gate . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2.5 Corner Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7 Conclusion 105
Bibliography 108
Scientific Contribution in the Ph.D. Period 125
Journal of Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Selective Conference Papers . . . . . . . . . . . . . . . . . . . . . . . . . . 126
dc.language.isoen
dc.subject氮化鎵zh_TW
dc.subject短通道效應zh_TW
dc.subject效率衰退zh_TW
dc.subject奈米線zh_TW
dc.subject發光二極體zh_TW
dc.subject場效電晶體zh_TW
dc.subject有限元素法zh_TW
dc.subject電流擴佈zh_TW
dc.subject漂移-擴散方程式zh_TW
dc.subject帕松方程式zh_TW
dc.subject氮化銦鎵zh_TW
dc.subjectInGaNen
dc.subjectfield effect transistoren
dc.subjectlight emitting diodeen
dc.subjectnanowireen
dc.subjectefficiency droopen
dc.subjectshort-channel effecten
dc.subjectcurrent spreadingen
dc.subjectfinite element methoden
dc.subjectGaNen
dc.subjectdrift-diffusion equationen
dc.subjectPoisson equationen
dc.title氮化鎵元件傳播特性探討zh_TW
dc.titleTransport properties in GaN-based devicesen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee彭隆瀚(Lung-Han Peng),黃建璋(Jianjang Huang),陳奕君(I-Chun Cheng),郭浩中(Hao-chung Kuo),余沛慈(Peichen Yu)
dc.subject.keyword氮化鎵,氮化銦鎵,帕松方程式,漂移-擴散方程式,有限元素法,電流擴佈,短通道效應,效率衰退,奈米線,發光二極體,場效電晶體,zh_TW
dc.subject.keywordGaN,InGaN,Poisson equation,drift-diffusion equation,finite element method,current spreading,short-channel effect,efficiency droop,nanowire,light emitting diode,field effect transistor,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2013-11-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
7.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved