請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58851完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李君浩 | |
| dc.contributor.author | Ya-Ting Yang | en |
| dc.contributor.author | 楊雅婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:34:42Z | - |
| dc.date.available | 2017-01-27 | |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-11-27 | |
| dc.identifier.citation | Part A.
1.6 [1] M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswel, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk, and T. M. L. Wigley, Science 298, 981 (2002). [2] Hoppe and N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004). [3] C. W. Tang, Appl. Phys. Lett. 48, 183 (1986). [4] J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001). [5] B. A. Gregg and Hanna, J. Appl. Phys. 93, 3605 (2003). [6] P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001). [7] J. Xue, B.P. Rand, S. Uchida, and S. R. Forrest, Adv. Mater. 17, 66 (2005). [8] B.P. Rand, J. Xue, S. Uchida, and S. R. Forrest, J. Appl. Phys. 98, 124902 (2005). [9] N. Camaioni and R. Po, J. Phys. Chem. Lett. 4, 1821 (2013). [10] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005). [11] Y. S. Choi, and W. H. Jo, Org. Electron. 14, 1621 (2013). [12] S. W. Chiu, L. Y. Lin, H. W. Lin, Y. H. Chen, Z. Y. Huang, Y. T. Lin, F. Lin, Y. H. Liu, and K. T. Wong, Chem. Comm. 48, 1857 (2012). [13] J. W. Mun, I. Cho, D. Lee, W. S. Yoon, O. K. Kwon, C. Lee, and S. Y. Park, Org. Electron. 14, 2341 (2013). [14] I. Levin and C. E. White, J. Chem. Phys. 19, 1079 (1951). [15] P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003). [16] B. Qi and J. Wang, J. Mater. Chem. 22, 24315 (2012). [17] B. P. Rand, J. Genoe, P. Heremans, and J. Poortmans, Prog. Photovolt: Res. Appl. 15, 659 (2007). [18] B. Qi and J. Wang, Phys. Chem. Chem. Phys. 15, 8972 (2013). [19] J. W. Kim, H. J. Kim, T. M. Kim, T. G. Kim, J. H. Lee, J. W. Kim, and J. J. Kim, Curr. Appl. Phys. 13, 7 (2013). [20] F. Yang, M. Shtein, and S. R. Forrest, Nat. Mater. 4, 37 (2005). [21] J. Xue1, B. P. Rand, S. Uchida, and S. R. Forrest, Adv. Mater. 17, 66 (2005). [22] Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, Adv. Mater. 23, 4636 (2011). [23] Y. J. Cheng, S. H. Yang, and C. S. Hsu, Chem. Rev. 109, 5868 (2009). [24] Z. R. Hong, C. J. Liang, X. Y. Sun, and X. T. Zeng, J. Appl. Phys. 100, 093711 (2006). [25] K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 128, 8108 (2006). [26] H. Kageyama, H. Ohishi, M. Janaka, Y. Ohmori, and Y. Shirota, Adv. Funct. Mater. 19, 3948 (2009). [27] L. Y. Lin, Y. H. Chen, Z. Y. Huang, H. W. Lin, S. H. Chou, F. Lin, C. W. Chen, and K. T. Wong, J. Am. Chem. Soc. 133, 15822 (2011). [28] L. C. Chi, H. F. Chen, W. Y. Hung, Y. H. Hsu, P. C. Feng, S. H. Chou, Y. H. Liu, and K. T. Wong, Sol. Energy Mater. Sol. Cells 109, 33 (2013). 3.8 [1] 鄭永志, “陽極緩衝層對有機光伏元件影響之研究”, 國立東華大學材料科學與工程學系碩士論文 (2011). [2] V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phy. Lett. 88, 073508 (2006). [3] K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, and H. Koinuma, Adv. Mater. 18, 1713 (2006). [4] X. Xi, W. Li, J. Wu, J. Ji, Z. Shi, and G. Li, Sol. Energy Mater. Sol. Cells 94, 2435 (2010). [5] Y. H. Chen, L. Y. Lin, C. W. Lu, F. Lin, Z. Y. Huang, H. W. Lin, P. H. Wang, Y. H. Liu, K. T. Wong, J. Wen, D. J. Miller, and S. B. Darling, J. Am. Chem. Soc.134, 13616 (2012). [6] H. W. Lin, S. W. Chiu, L. Y. Lin, Z. Y. Hung, Y. H. Chen, F. Lin, and K. T. Wong, Adv. Mater, 24, 2269 (2012). Part B. 1.4 1.4.1 References of LCD [1] F. Reinitzer, Monatsh. Chem. 9, 421 (1888). [2] I. Dierking, “Textures of Liquid Crystals”, Wiley. com, (2003). [3] Ch. Schuller, F. Klopf, J. P. Reithmaier, M. Kamp, and A. Forchel, Appl. Phys. Lett. 82, 2767 (2003). [4] M. Schadt and W. Helfrich, Appl. Phys. Lett. 18, 127 (1971). [5] M. J. Stephen and J. P. Straley, Rev. Mod. Phys. 46, 617 (1974). [6] T. Niori, T. Sekine, J. Watanabe, T. Furukawa, and H. Takezo, J. Mater. Chem. 6, 1231 (1996). [7] M. Schadt and W. Helfrich, Appl. Phys. Lett. 18, 127 (1971). [8] L. A. Madsen, T. J. Dingemans, M. Nakata, and E. T. Samulski, Phys. Rev. Lett. 92, 145505 (2004). [9] D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, J. Appl. Phys. 76, 1331 (1994). [10] R. B. Meyer, Appl. Phys. Lett. 12, 281 (1968). [11] Y. Hisakado, H. Kikuchi, T. Nagamura, and T. Kajiyama, Adv. Mater. 17, 96 (2005). [12] M. Jiao, Y. Li, and S. T. Wu, Appl. Phys. Lett. 96, 011102 (2010). [13] M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, and S. T. Wu, J. Phys. D: Appl. Phys. 42, 235502 (2009). [14] H. C. Cheng, J. Yan, T. Ishinabe, S. T. Wu, Appl. Phys. Lett. 98, 261102 (2011). [15] I. Dierking, Adv. Mater. 12, 167 (2000). [16] M. Mucha, Prog. Polym. Sci. 28, 837 (2003). [17] P. Formentin, R. Palacios, J. Ferre-Borrull, J. Pallares, and L. F. Marsal, Synth. Met. 158, 1004 (2008). [18] H. Guillard, P. Sixou, L. Reboul, and A. Perichaud, Polymer 42, 9753 (2001). [19] Birendra Bahadur, “Liquid crystals– Applications and uses,” World Scientific 1 (1990). [20] Y. Koike and K. Okamoto, Fujitsu Sci. Tech. J 35, 221 (1999). [21] C. T. Hsieh, C. Y. Huang and C. H. Lin, Opt. Express 15, 11685 (2007). [22] S. H. Lee, S. L. Lee and H. Y. Kim, Appl. Phys. Lett. 73, 2881 (1998). [23] S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G. D. Lee, J. J. Lyu, and K. H. Kim, Appl. Phys. Lett. 90, 261910 (2007). 1.4.2 References of PDMS [24] F. Li, S. H. Chen, H. Luo, Y. F. Zhou, J. J. Lai, and Y. Q. Gao, Opt. Laser Technol. 44, 1054 (2012). [25] K. Saito, H. Hayashi, and H. Nishikawa, Nucl. Instrum. Methods Phys. Res., Sect. B 306, 284 (2013). [26] T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, Langmuir 18, 5314 (2002). [27] C. F. Liu, C. T. Pan, Y. C. Chen, Z. H. Liu, and C. J. Wu, Opt. Commun. 291, 349 (2013). [28] H. V. Han, H. C. Chen, C. C. Lin, Y. L. Tsai, H. C. Kuo, and P. C. Yu, Proc. of SPIE 8620, 1 (2013). [29] J. H. Lee, H. S. Lee,B. K. Lee, W. S. Choi, H. Y. Choi, and J. B. Yoon, Opt. Lett. 32, 2665 (2007). 3.5 [1] D. Coates, J. Mater. Chem. 5, 2063 (1995). [2] Q. Ll. Ma and Y. M. Huang, Mater. Sci. Forum 663, 795 (2011). [3] H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, Nature Mater. 1, 64 (2002). [4] S. W. Choi, S. Yamamoto, Y. Haseba, H. Higuchi, and H. Kikuchi, Appl. Phys. Lett. 92, 043119 (2008). [5] G. Paul Montgomery, Jr., and A. Vaz. Nuno, Appl. Opt. 26, 738 (1987). [6] K. J. Yang, S. C. Lee, and B. D. Choi, Jpn. J. Appl. Phys. 49, 05EA05-1 (2010). [7] O. V. Yaroshchuk, L. O. Dolgov, and A. D. Kiselev, Phys. Rev. E 72, 051715 (2005). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58851 | - |
| dc.description.abstract | 本篇論文第一部分旨要藉由合成的新施體材料藉由混和濃度調變及膜厚變化製備高效率之平面異質混和界面小分子有機太陽能電池元件。首先我們引入一新有機施體染敏化材料4-methyl-N-(4-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)phenyl)-N- p-tolylaniline (DTNPBO)及5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-N,N-dip- tolylthiophen-2-amine (DTNTBO),相較於一般施體材料,DTNPBO及DTNTBO具有較好的吸收效率且吸收波長在長波長550 - 700 nm的區段,並利用與受體材料碳60或碳70混合,經由適當的膜厚及混合比例調變後,其DTNPBO最佳化元件結構具有0.96 V之開路電壓和9.81 mA/cm2之短路電流,表現出5.27 %之功率轉換效率,而DTNTBO最佳化元件結構則具有0.89 V之開路電壓和12.4 mA/cm2之短路電流,表現出5.02 %之功率轉換效率。
第二部分,我們利用光學增亮膜及轉印技術成功製備出一新型非平面液晶結構,並且引入液晶聚合物混合薄膜(polymer dispersed liquid crystal, PDLC),由於結構的改變,可以提高暗態及亮態的對比度,實驗驗證下,發現不同的液晶結構,藉由入射角的改變,可以得到相近的光電參數;此外,藉由不同入射角的量測,證實非平面液晶結構可以增加視角,即使在入射角為70度的情況下該元件仍能運作。 第一章簡略敘述有機太陽能電池及液晶元件的演變與發展,並分別敘述其物理機制;第二章介紹元件架構與實驗所使用的儀器與原理;第三章及第四章則分別討論有機太陽能電池及液晶非平面元件的設計、表現及未來可研究的方向。 | zh_TW |
| dc.description.abstract | The first objective of this dissertation is to fabricate the planar-mixed heterojunction (PMHJ) small molecular organic photovoltaic (OPV) devices with new donor materials by engineering the mixing ratio and thickness of the device.
The high performance OPV device was fabricated by utilizing the new materials include 4-methyl-N-(4-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)phenyl)-N-p-tolylaniline (DTNPBO) and 5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-N,N-dip-tolylthiophen-2- amine (DTNTBO) mixed with fullerene (C60 or C70) as the active layer in the OPV device. Compared with the conventional donor materials, the absorption coefficient was increased and absorption region was at long wavelength around 550 - 700 nm, thus improved the device efficiency. The best performance of DTNPBO based OPV with the power conversion efficiency (PCE) of 5.27 % and a higher open circuit voltage (VOC), short circuit current density (JSC) and fill factor (FF) of 0.96 V, 9.81 mA/cm2, and 50.03 %, respectively; and DTNTBO based OPV with the PCE of 5.02 % and VOC, JSC and FF of 0.89 V, 12.4 mA/cm2, and 45.5 %, respectively. The second objective of this dissertation is to fabricate a new type liquid crystal (LC) device use a non-planar structure. In our experiment, we fabricate the LC devices by brightness enhancement film (BEF) and polydimethylsiloxane (PDMS) and introduce polymer dispersed liquid crystals (PDLCs) to investigate for non-planar structure device. Here, we successfully fabricate non-planar device which device can improve the contrast ratio. Moreover, we observe the contrast ratio and the maximum and minimum of transmittance were similar between planar device under incidence angle was 0o and non-planar device incidence angle was 45o resulting from their optical path. Moreover, we demonstrated the non-planar PDLC device could improve viewing angle. In this thesis, we first demonstrate the organic photovoltaic (OPV) device based on a 4-methyl-N-(4-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)phenyl)-N-p-tolylaniline (DTNPBO) or 5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-N,N-dip-tolylthiophen-2- amine (DTNTBO) / fullerene (C60 or C70)/ bathocuproine (BCP) planar-mixed heterojunction (PMHJ) structure with different hole transport layer (HTL) or thickness and combinations of Al as the cathode. Then, we demonstrate the liquid crystal device based on non-planar with prism sheet (also called brightness enhancement film, BEF) and polydimethylsiloxane (PDMS). This dissertation is organized as follows. Part A and Part B describe OPV and LCD, respectively. Chapter 1 describes a brief overview of OPV device or LC device. Chapter 2 shows the fabrication and measurement systems. Chapter 3 and Chapter 4 describe the device design, performance, and future work of OPV device or LC device, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:34:42Z (GMT). No. of bitstreams: 1 ntu-102-R98941016-1.pdf: 5377234 bytes, checksum: 027a02c16a78a673340efe890b6bbb52 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書......................................................................................................#
誌謝.......................................................................................................................i 摘要......................................................................................................................iii Abstract.....................................................................................................................v Contents..................................................................................................................vii Figure Contents........................................................................................................xi Table Contents.......................................................................................................xvii Part A Study of Small Molecular Organic Photovoltaic Device...........................1 Chapter 1 Introduction............................................................................................1 1.1 Overview of OPV Device...................................................................................1 1.2 Fundamental Principles of OPV.........................................................................3 1.3 Architecture of Small Molecule OPV..................................................................6 1.4 Influences from Different Donor Materials.........................................................8 1.5 Motivation........................................................................................................10 1.6 References......................................................................................................10 Chapter 2 Fabrication and Measurement Systems...............................................13 2.1 Substrate Preparation......................................................................................13 2.2 Fabrication System..........................................................................................14 2.3 Measurement of Power Conversion Efficiency (PCE).....................................16 2.4 Measurements of External Quantum Efficiency (EQE) and Internal Quantum Efficiency (IQE) .......................................................................................................17 2.5 Measurement of Optical Characteristics..........................................................18 Chapter 3 OPV Device with DTNPBO and DTNTBO in PMHJ Structure..............20 3.1 Introduction......................................................................................................20 3.2 Characteristics of Donor Materials...................................................................20 3.3 Surface Treatment of DTNPBO Based OPV Device.......................................23 3.4 Compared Bilayer and PMHJ Structure of DTNPBO Based OPV Device.......29 3.5 Optimization of DTNPBO Based OPV Device.................................................31 3.5.1 DTNPBO/C60 Based OPV..............................................................................31 3.5.2 Optimization of Thickness of Active Layer in C60 Based OPV.......................33 3.5.3 Optimization of Mixing Ratio in C60 Based OPV...........................................35 3.5.4 Exciton Blocking Layer at Anode Side...........................................................37 3.5.5 Replacement of C60 by C70.........................................................................39 3.5.6 Optimization of Thickness of Active Layer in C70 Based OPV......................43 3.5.7 Optimization of Mixing Ratio in C70 Based OPV...........................................47 3.5.8 Inserting Material as Exciton Blocking in C70 Based OPV............................50 3.6 DTNTBO of OPV Device...............................................................................52 3.6.1 Device Structure in DTNTBO/C60 Based OPV Device.................................52 3.6.2 Optimization of Thickness of Active Layer in C60 Based OPV......................53 3.6.3 Optimization of Mixing Ratio of Mixing Layer in C60 Based OPV.................55 3.6.4 Device Structure in DTNTBO/C70 Based OPV Device................................57 3.6.5 Optimization of Mixing Ratio in Mixing Layer in C70 Based OPV.................58 3.6.6 Inserting C60 as Acceptor Material in DTNTBO/C70 Based OPV.................61 3.6.7 Inserting NPB as Blocking Layer in DTNTBO/C70 Based OPV....................63 3.7 Summary.......................................................................................................65 3.8 References....................................................................................................65 Chapter 4 Conclusions and Future Works...........................................................67 4.1 Conclusions...................................................................................................67 4.2 Future Works.................................................................................................68 Part B Study of Non-planar Liquid Crystal Device...........................................69 Chapter 1 Introduction.........................................................................................69 1.1 Introduction to Liquid Crystal Device (LCD)..................................................69 1.1.1 Overview of LC.............................................................................................69 1.1.2 Structure of LCD...........................................................................................72 1.2 Introduction to Polydimethylsiloxane (PDMS)...............................................76 1.3 Motivation......................................................................................................78 1.4 References....................................................................................................78 1.4.1 References of LCD........................................................................................78 1.4.2 References of PDMS.....................................................................................79 Chapter 2 Fabrication and Measurement Systems.............................................81 2.1 Substrate Preparation...................................................................................81 2.2 Device Fabrication........................................................................................82 2.3 Measurement of Optical Characteristics.......................................................83 2.4 Measurement of Morphology........................................................................83 Chapter 3 Results and Discussions....................................................................84 3.1 Introduction...................................................................................................84 3.2 Surface Morphology of Substrates...............................................................85 3.3 Electrical and Optical Characteristics...........................................................87 3.4 Summary.......................................................................................................93 3.5 References....................................................................................................93 Chapter 4 Conclusions and Future Works...........................................................94 4.1 Conclusions...................................................................................................94 4.2 Future Works.................................................................................................94 | |
| dc.language.iso | en | |
| dc.subject | 視角 | zh_TW |
| dc.subject | 液晶 | zh_TW |
| dc.subject | 有機小分子太陽能電池 | zh_TW |
| dc.subject | 平面異質混和界面 | zh_TW |
| dc.subject | 光學增亮膜 | zh_TW |
| dc.subject | 轉印技術 | zh_TW |
| dc.subject | 液晶聚合物混合薄膜 | zh_TW |
| dc.subject | 對比度 | zh_TW |
| dc.subject | PDLC | en |
| dc.subject | planar-mixed heterojunction | en |
| dc.subject | PDMS | en |
| dc.subject | BEF | en |
| dc.subject | liquid crystal | en |
| dc.subject | non-planar | en |
| dc.subject | organic photovoltaic devices | en |
| dc.subject | contrast ratio | en |
| dc.subject | viewing angle | en |
| dc.title | 小分子有機太陽能電池及非平面液晶元件結構之研究 | zh_TW |
| dc.title | Study of Small Molecular Organic Photovoltaic Device and Non-planar Liquid Crystal Device | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 汪根欉,王俊凱,劉國辰,林奇鋒 | |
| dc.subject.keyword | 有機小分子太陽能電池,平面異質混和界面,液晶,光學增亮膜,轉印技術,液晶聚合物混合薄膜,對比度,視角, | zh_TW |
| dc.subject.keyword | organic photovoltaic devices,planar-mixed heterojunction,PDMS,BEF,liquid crystal,non-planar,PDLC,contrast ratio,viewing angle, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-11-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 5.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
