請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58834完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王倫 | |
| dc.contributor.author | Shih-Chieh Lin | en |
| dc.contributor.author | 林士傑 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:33:43Z | - |
| dc.date.available | 2016-01-27 | |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-12-03 | |
| dc.identifier.citation | [1] Y. Zhu, R. A. Dluhy, and Y. P. Zhao, 'Development of silver nanorod array based fiber optic probes for SERS detection,' Sensors and Actuators B-Chemical, vol. 157, pp. 42-50, Sep 20 2011.
[2] X. Yang, N. Ileri, C. C. Larson, T. C. Carlson, J. A. Britten, A. S. P. Chang, et al., 'Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering,' Optics Express, vol. 20, pp. 24819-24826, Oct 22 2012. [3] V. M. Sundaram and S. B. Wen, 'Fabrication of micro-optical devices at the end of a multimode optical fiber with negative tone lift-off EBL,' Journal of Micromechanics and Microengineering, vol. 22, Dec 2012. [4] S. Scheerlinck, P. Dubruel, P. Bienstman, E. Schacht, D. Van Thourhout, and R. Baets, 'Metal Grating Patterning on Fiber Facets by UV-Based Nano Imprint and Transfer Lithography Using Optical Alignment,' Journal of Lightwave Technology, vol. 27, pp. 1417-1422, May 15 2009. [5] G. Roelkens, D. Vermeulen, F. Van Laere, S. Selvaraja, S. Scheerlinck, D. Taillaert, et al., 'Bridging the Gap Between Nanophotonic Waveguide Circuits and Single Mode Optical Fibers Using Diffractive Grating Structures,' Journal of Nanoscience and Nanotechnology, vol. 10, pp. 1551-1562, Mar 2010. [6] S. Kang, H. E. Joe, J. Kim, Y. Jeong, B. K. Min, and K. Oh, 'Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation,' Applied Physics Letters, vol. 98, Jun 13 2011. [7] U. Killat, C. Clausen, and G. Rabe, 'Binary phase gratings for couplers used in fiber-optic communications,' Fiber & Integrated Optics, vol. 3, pp. 221-235, 1980. [8] C.-T. Tseng, 'Fabrication and Application of Binary Phase Grating on a Fiber End by Utilizing Interference Lithography,' Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 2011. [9] S. O. Kasap, Optoelectronics and photonics : principles and practices. Upper Saddle River, NJ: Prentice Hall, 2001. [10] S. A. Henck, 'In situ real‐time ellipsometry for film thickness measurement and control,' Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 10, pp. 934-938, 1992. [11] H. G. Tompkins, B. Vasquez, T. Mathis, and G. Yetter, 'Measuring the Thickness of Oxide on Polysilicon using Ultraviolet Ellipsometry,' Journal of The Electrochemical Society, vol. 139, pp. 1772-1777, June 1, 1992 1992. [12] J. A. Levitt, D. R. Matthews, S. M. Ameer-Beg, and K. Suhling, 'Fluorescence lifetime and polarization-resolved imaging in cell biology,' Current Opinion in Biotechnology, vol. 20, pp. 28-36, Feb 2009. [13] J. Guo and D. Brady, 'Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,' Applied Optics, vol. 39, pp. 1486-1492, 2000. [14] J. Millerd, N. Brock, J. Hayes, M. North-Morris, M. Novak, and J. Wyant, 'Pixelated phase-mask dynamic interferometer,' Interferometry Xii: Techniques and Analysis, vol. 5531, pp. 304-314, 2004. [15] C. L. Koliopoulos, 'Simultaneous phase-shift interferometer,' in 8th Intl Symp on Gas Flow and Chemical Lasers, 1992, pp. 119-127. [16] K. Freischlad, R. Eng, and J. B. Hadaway, 'Interferometer for testing in vibration environments,' in Proc. SPIE, 2002, pp. 311-322. [17] V. Gruev, 'Fabrication of a dual-layer aluminum nanowires polarization filter array,' in Circuits and Systems (ISCAS), 2012 IEEE International Symposium on, 2012, pp. 3130-3133. [18] Y. Zhou and D. J. Klotzkin, 'Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1.55 um,' Applied Optics, vol. 47, pp. 3555-3560, 2008/07/10 2008. [19] M. Campbell, D. Sharp, M. Harrison, R. Denning, and A. Turberfield, 'Fabrication of photonic crystals for the visible spectrum by holographic lithography,' Nature, vol. 404, pp. 53-56, 2000. [20] M. Maldovan and E. L. Thomas, Periodic materials and interference lithography : for photonics, phononics and mechanics. Weinheim: Wiley-VCH, 2009. [21] H. C. Lefevre, 'Single-Mode Fiber Fractional Wave Devices and Polarization Controllers,' Electronics Letters, vol. 16, pp. 778-780, 1980. [22] M. Maldovan and E. L. Thomas, Periodic materials and interference lithography : for photonics, phononics and mechanics. Weinheim: Wiley-VCH, 2009. [23] H. A. Haus, Waves and fields in optoelectronics. Englewood Cliffs, NJ: Prentice-Hall, 1984. [24] P. S. Priambodo, Theoretical analysis, design, fabrication and characterization of dielectric and nonlinear guided-mode resonance optical filters, 2003. [25] B. J. Lin, Optical lithography : here is why. Bellingham, Wash.: SPIE, 2009. [26] H. A. Macleod, Thin-film optical filters. Philadelphia: Institute of Physics Pub., 2001. [27] 'SM300-SC and SM400-SC Pure Silica Core Fiber,' Fibercore Ltd. Available: http://fibercore.com/product/pure-silica-core-sm-fibers. [28] Z. Jaroszewicz, 'A Review of Fresnel Zone Plate Moire Patterns Obtained by Translations,' Optical Engineering, vol. 31, pp. 458-464, Mar 1992. [29] R. Tacken, E. C. Rodenburg, M. van der Veer, J. H. van Vegchel, and R. Eijmberts, 'Evaluation of I-line and DUV photoresists for high-density optical disc mastering,' in 26th Annual International Symposium on Microlithography, 2001, pp. 637-646. [30] H. Kirchauer, Photolithography simulation: Osterr. Kunst-u. Kulturverl., 2000. [31] M. Maldovan and E. L. Thomas, Periodic materials and interference lithography : for photonics, phononics and mechanics. Weinheim: Wiley-VCH, 2009. [32] H. A. Haus, Waves and fields in optoelectronics. Englewood Cliffs, NJ: Prentice-Hall, 1984. [33] Y. O. Harada, JP), Kuwayama, Shigeo (Odawara, JP), 'Acid-soluble glass for making flexible optical fiber bundle,' U.S. Patent 4460696 Patent, 1984. [34] J. E. Shelby, Introduction to glass science and technology. Cambridge: Royal Society of Chemistry, 2005. [35] Y.-L. Yeh, 'Research on the Vertical Scanning of White-Light Interferometry,' Department of Mechanical Engineering, National Taiwan University, 2004. [36] Y.-P. Chen, 'Stitching Submicron Periodic Patterns over a Planar Substrate and a Roller by Utilizing Step-and-Align Interference Lithography,' Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 2011. [37] B. J. Lin, Optical lithography : here is why. Bellingham, Wash.: SPIE, 2009. [38] S. Wolf and R. N. Tauber, Silicon processing for the VLSI era vol. 1. Sunset Beach, Calif.: Lattice Press, 2000. [39] J. E. Shelby, Introduction to glass science and technology. Cambridge: Royal Society of Chemistry, 2005. [40] M. Khashan and A. Nassif, 'Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2–3 μm,' Optics communications, vol. 188, pp. 129-139, 2001. [41] E. D. Palik, Handbook of Optical Constants of Solids: Index vol. 3: Access Online via Elsevier, 1998. [42] J. Liu, T.-H. Cheng, Y.-K. Yeo, Y. Wang, L. Xue, Z. Xu, et al., 'Light beam coupling between standard single mode fibers and highly nonlinear photonic crystal fibers based on the fused biconical tapering technique,' Optics express, vol. 17, pp. 3115-3123, 2009. [43] H. Kim, J. Kim, U.-C. Paek, B. H. Lee, and K. T. Kim, 'Tunable photonic crystal fiber coupler based on a side-polishing technique,' Optics letters, vol. 29, pp. 1194-1196, 2004. [44] A. Dhawan, M. Gerhold, A. Madison, J. Fowlkes, P. E. Russell, T. Vo‐Dinh, et al., 'Fabrication of nanodot plasmonic waveguide structures using FIB milling and electron beam‐induced deposition,' Scanning, vol. 31, pp. 139-146, 2009. [45] E. J. Smythe, M. D. Dickey, J. Bao, G. M. Whitesides, and F. Capasso, 'Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection,' Nano letters, vol. 9, pp. 1132-1138, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58834 | - |
| dc.description.abstract | 近來,在光纖端面製作次微米結構十分受到矚目,到目前為止已經發展了許多應用。其中做在光纖端面上的二元相位光柵與其應用,是我們在本篇論文的主要焦點。在此論文中,我們先介紹雙光光纖干涉微影術,來顯示光纖在系統中所扮演的角色,以及作為一個傳統干涉曝光術與全光纖干涉曝光術之間的過渡。接著會介紹二元相位光柵全光纖雙光干涉曝光系統。
雙光光纖干涉微影術由兩個次系統組成:一是光束追跡系統,來穩定雷射的指向性,降低環境擾動的影響;另一是光纖干涉曝光系統,在基板上製作出干涉條紋。我們將比較光阻圖案的實驗結果與MATLAB的模擬。從模擬結果得知,一般因中央重合的兩道高斯光束而形成的干涉條紋會接近於雙曲線形狀。由單一曝光區域的掃描式電子顯微鏡影像顯示,條紋越靠近中央會有越好的對比度。我們也利用雙光光纖干涉微影術製造其他的週期。當製做不同方向的光柵在同一基板時,相鄰曝光區域因為距離效應而產生的疊紋(moire pattern)以及過曝區域的產生皆進行模擬與實驗。 在二元相位光柵全光纖雙光干涉曝光系統中,關鍵元件是光纖端面二元相位光柵。為了要先行確認光纖端面二元相位光柵的製做參數,我們會先在石英玻璃上製作二元相位光柵,並量測其繞射效率。我們藉由此參數,利用酸化玻璃(acid soluble glass),改善了光纖集束(fiber bundle)製程,製做出光纖端面二元相位光柵。我們接著會介紹二元相位光柵全光纖雙光干涉曝光系統。由公式推導及實驗驗證,可得知以雷射通過二元相位光柵的繞射光為光源,在光阻上曝光時,光阻光柵圖案的周期將會是二元相位光柵周期的一半。藉由適當地調整曝光劑量,可以由二元相位光柵全光纖雙光干涉曝光系統製造出完整的光阻圖案。在此光阻光柵圖案均勻地鍍上金後,由實驗及模擬佐證,此圖案可以被視為是反射式偏振片。藉由調整二元相位光柵全光纖雙光干涉曝光系統中的曝光平台,我們可以在同一片基板上製做具有不同光柵方向的四個曝光區域的方型圖樣,此圖樣是微偏振片陣列的基礎。 | zh_TW |
| dc.description.abstract | To date, fabricating submicron structures on an optical fiber facet has drawn a lot of attentions which has brought many applications have been developed. One particular optical component based on submicron structures on optical fiber facets, binary phase grating (BPG), is the main focus of this work. In this work, two-beam fiber interference lithography is first demonstrated to show how the fibers can play a role in interference lithography, and acts as a transition from the traditional interference lithography to an all-fiber one. Then an all-fiber two-beam interference exposure system based on the optical fiber patterned with BPG is introduced.
Two-beam fiber interference exposure system is composed of two subsystems, a beam steering system to stabilize laser beam in free space due to possible environment variations, and a fiber interference lithography system to fabricate interference patterns on a substrate. The experimental results of PR patterns by two-beam fiber interference lithography will be shown, along with the MATLAB simulation results. From the simulation, interference patterns by two Gaussian beams of which the centers are matched are hyperbolic shape. The SEM images one show that interference patterns at the center of single exposure area have the best contrast. By adjusting the incident angle of exposure beams, fabrication of interference patterns with variable periods are presented. While fabricating multiple exposure areas on the same chip, moire patterns and overexposure areas will occur due to distance effect. Two-beam interference exposure system by using optical fiber ends patterned with BPGs is introduced. To obtain the process parameters of optical fiber ends patterned with BPGs, BPG fabricated on quartz substrate is fabricated first, and diffraction efficiency is measured. Using these parameters, we will demonstrate the procedure to fabricate optical fiber ends patterned with BPGs by a modified fiber bundle process using acid soluble glass. We then introduce the setup of two-beam interference exposure system by using an optical fiber ends patterned with BPGs. By adjusting the exposure dose properly, complete PR grating patterns are fabricated by this system. The period of these PR grating patterns is a half of the BPG structure, verified by exposure results and equation deviations. These PR grating patterns deposited with a chromium layer and a silver layer are lifted-off, and the left metal grid structures are confirmed to be wire grid polarizers in simulation and measurements. By adjusting the exposure platform in two-beam interference exposure system by using optical fiber ends patterned with BPGs, four adjacent exposure areas with different grating directions arranged in a square pattern can be fabricated on the same substrate, which is the base of micro-polarizer array. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:33:43Z (GMT). No. of bitstreams: 1 ntu-102-R99941020-1.pdf: 8700245 bytes, checksum: 33f6dde4328073cd8690bdfcdde61bc7 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………...#
誌謝 i 中文摘要 ii ABSTRACT iii Statement of Contributions v CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Micro-polarizer Array 3 1.3 Organization of the Thesis 6 Chapter 2 Setup of Two-beam Fiber Interference Exposure System 10 2.1 Physical Setup of Two-beam Fiber Interference Exposure System 11 2.1.1 Beam Steering System 11 2.1.2 Fiber Interference Lithography System 11 2.2 Calibration of Two-beam Fiber Interference Exposure System 14 Chapter 3 Simulation and Exposure Results of Two-beam Fiber Interference Lithography 20 3.1 Basic Characteristics of Interference Fringes by Two Gaussian Beams 20 3.2 Changing Interference Pattern Period in a Simple Way 21 3.3 Fabricating Adjacent Exposure Areas with Different Directions 22 3.3.1 Moire Patterns Among Multiple Exposure Areas 22 3.3.2 Distance Effect of Multiple Fringes with Different Directions 23 Chapter 4 Setup of Two-beam Interference Exposure System by Using Optical Fiber Ends Patterned with BPGs 35 4.1 Fabrication of Fiber Bundle 37 4.2 Methods of Applying Patterns on Fiber Bundle 39 4.3 Transferring Patterns on Fiber Bundle 40 4.4 Separating Optical Fiber Ends Patterned with BPGs 41 Chapter 5 Measurement and Exposure Results of Two-beam Interference Exposure System by Using Optical Fiber Ends Patterned with BPGs 50 5.1 Measurement and Exposure Results of BPG on Quartz Substrate 50 5.1.1 Diffraction Efficiency Measurement Results of BPG on Quartz Substrate 50 5.1.2 Exposure Results of Interference Lithography Patterns by BPG on Quartz Substrate 51 5.2 Measurement and Exposure Results of Two-beam Interference Exposure System by Using Optical Fiber Ends Patterned with BPGs 52 5.2.1 Diffraction Efficiency Measurement Results of Two-beam Interference Exposure System by Using Optical Fiber Ends Patterned with BPGs 52 5.2.2 Exposure Results of Two-beam Interference Exposure System by Using Optical Fiber Ends Patterned with BPGs 53 5.2.3 Measurement Results of Lifted-off Wire Grid Polarizers Fabricated by Two-beam Interference Exposure System by Using Optical Fiber Ends Patterned with BPGs 55 5.3 Comparison of Exposure Results with the Previous Work [8] 57 Chapter 6 Conclusions and Future Work 73 6.1 Conclusions 73 6.2 Future Work 76 6.2.1 Improvement of Two-beam Fiber Interference Lithography to a Totally All-fiber Form 76 6.2.2 Fabricating Surface-enhanced Raman Scattering on Fiber Facets in the Process of Fabricating Optical Fiber Ends Patterned with BPGs 77 REFERENCES 78 | |
| dc.language.iso | en | |
| dc.subject | 干涉微影 | zh_TW |
| dc.subject | 光纖 | zh_TW |
| dc.subject | 二元相位光柵 | zh_TW |
| dc.subject | 繞射效率 | zh_TW |
| dc.subject | 光纖集束 | zh_TW |
| dc.subject | interference lithography | en |
| dc.subject | optical fiber | en |
| dc.subject | binary phase grating | en |
| dc.subject | diffraction efficiency | en |
| dc.subject | fiber bundle | en |
| dc.title | 建構光纖干涉微影的兩種曝光系統以製作微極化元件 | zh_TW |
| dc.title | Building up Two Exposure Systems of Optical Fiber Interference Lithography to Make Micro Polarizers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蘇忠傑,陳學禮 | |
| dc.subject.keyword | 干涉微影,光纖,二元相位光柵,繞射效率,光纖集束, | zh_TW |
| dc.subject.keyword | interference lithography,optical fiber,binary phase grating,diffraction efficiency,fiber bundle, | en |
| dc.relation.page | 82 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2013-12-03 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 8.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
