Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58821
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張培仁(Pei-Zen Chang)
dc.contributor.authorTsung-Han Leeen
dc.contributor.author李宗翰zh_TW
dc.date.accessioned2021-06-16T08:32:57Z-
dc.date.available2019-01-27
dc.date.copyright2014-01-27
dc.date.issued2013
dc.date.submitted2013-12-10
dc.identifier.citation[1] Daniel J. Inman, and Alper Erturk, 2011, Piezoelectric Energy Harvesting, John Wiley & Sons, Ltd.
[2] Roundy, Shad, Paul K. Wright, and Jan Rabaey. (2003). “A study of low level vibrations as a power source for wireless sensor nodes.” Computer communications, 26.11, 1131-1144.
[3] Borno, R. T., Steinmeyer, J. D., & Maharbiz, M. M. (2009). “Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows.” Applied Physics Letters, 95(1), 013705-013705.
[4] Naruse, Y., Matsubara, N., Mabuchi, K., Izumi, M., & Suzuki, S. (2009). “Electrostatic micro power generation from low-frequency vibration such as human motion.” Journal of Micromechanics and Microengineering, 19(9), 094002.
[5] Krupenkin, T., & Taylor, J. A. (2011). “Reverse electrowetting as a new approach to high-power energy harvesting.” Nature communications, 2, 448.
[6] Kulkarni, S., Koukharenko, E., Torah, R., Tudor, J., Beeby, S., O’Donnell, T., & Roy, S. (2008). “Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator.” Sensors and Actuators A: Physical, 145, 336-342.
[7] Saha, C. R., O’donnell, T., Wang, N., & McCloskey, P. (2008). “Electromagnetic generator for harvesting energy from human motion.” Sensors and Actuators A: Physical, 147(1), 248-253.
[8] Li, P., Wen, Y., Liu, P., Li, X., & Jia, C. (2010). “A magnetoelectric energy harvester and management circuit for wireless sensor network.” Sensors and actuators A: Physical, 157(1), 100-106.
[9] Bouendeu, E., Greiner, A., Smith, P. J., & Korvink, J. G. (2011). “A low-cost electromagnetic generator for vibration energy harvesting.” Sensors Journal, IEEE, 11(1), 107-113.
[10] Richards, C. D., Anderson, M. J., Bahr, D. F., & Richards, R. F. (2004). “Efficiency of energy conversion for devices containing a piezoelectric component.” Journal of Micromechanics and Microengineering, 14(5), 717.
[11] Hagood, N. W., Roberts, D. C., Saggere, L., Breuer, K. S., Chen, K. S., Carretero, J. A., ... & Su, Y. H. (2000). “Microhydraulic transducer technology for actuation and power generation.” In SPIE's 7th Annual International Symposium on Smart Structures and Materials (pp. 680-688). International Society for Optics and Photonics.
[12] Fourie, D. (2009). “Shoe mounted PVDF piezoelectric transducer for energy harvesting.”
[13] Jeon, Y. B., Sood, R., Jeong, J. H., & Kim, S. G. (2005). “MEMS power generator with transverse mode thin film PZT.” Sensors and Actuators A: Physical, 122(1), 16-22.
[14] Beeby, S. P., Tudor, M. J., & White, N. M. (2006). “Energy harvesting vibration sources for microsystems applications.” Measurement science and technology,17(12), R175.
[15] Kymissis, J., Kendall, C., Paradiso, J., & Gershenfeld, N. (1998). “Parasitic power harvesting in shoes.” In Wearable Computers, 1998. Digest of Papers. Second International Symposium on (pp. 132-139). IEEE.
[16] Shenck, N. S., & Paradiso, J. A. (2001). “Energy scavenging with shoe-mounted piezoelectrics.” Micro, IEEE, 21(3), 30-42.
[17] Yaglioglu, O. (2002). Modeling and design considerations for a micro-hydraulic piezoelectric power generator (Doctoral dissertation, Massachusetts Institute of Technology).
[18] Hagood IV, N. W., Roberts, D. C., Saggere, L., Schmidt, M. A., Spearing, M., Breuer, K. S., ... & Carrerero, J. A. (2000). “Development of micro-hydraulic transducer technology.” In Proceedings of the 10th International Conference on Adaptive Structures and Technologies (pp. 71-81).
[19] Wang, Z. L., & Song, J. (2006). “Piezoelectric nanogenerators based on zinc oxide nanowire arrays.” Science, 312(5771), 242-246.
[20] Wang, X., & Shi, J. (2012). “Piezoelectric nanogenerators for self-powered nanodevices.” In Piezoelectric Nanomaterials for Biomedical Applications (pp. 135-172). Springer Berlin Heidelberg.
[21] Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., & Wang, Z. L. (2010). “Self-powered nanowire devices.” Nature Nanotechnology, 5(5), 366-373.
[22] Hu, Y., Lin, L., Zhang, Y., & Wang, Z. L. (2012). “Replacing a Battery by a Nanogenerator with 20 V Output.” Advanced Materials, 24(1), 110-114.
[23] Qin, Y., Wang, X., & Wang, Z. L. (2008). “Microfibre–nanowire hybrid structure for energy scavenging.” Nature, 451(7180), 809-813.
[24] Chang, W. T., Chen, Y. C., Lin, R. C., Cheng, C. C., Kao, K. S., & Huang, Y. C. (2011). “Wind-power generators based on ZnO piezoelectric thin films on stainless steel substrates.” Current Applied Physics, 11(1), S333-S338.
[25] Pan, C. T., Liu, Z. H., Chen, Y. C., & Liu, C. F. (2010). “Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates.” Sensors and Actuators A: Physical, 159(1), 96-104.
[26] 王英華,晶體學導論,民78,北京 : 清華大學。
[27] 吳秉融。氧化鋅薄膜成長於PET基板上並應用於壓電換能器之研究。民98,國立中山大學電機工程學系碩士論文。
[28] 許毓麟。添加氧化鋰與氧化鋁的氧化鋅之發光性質與微結構分析,民101,國立中山大學材料與光電科學學系碩士論文。
[29] Liang, S., Sheng, H., Liu, Y., Huo, Z., Lu, Y., & Shen, H. (2001). “ZnO Schottky ultraviolet photodetectors.” Journal of crystal Growth, 225(2), 110-113.
[30] Sharma, P., Sreenivas, K., & Rao, K. V. (2003). “Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering.” Journal of Applied Physics, 93(7), 3963-3970.
[31] Yamamoto, T., Shiosaki, T., & Kawabata, A. (1980). “Characterization of ZnO piezoelectric films prepared by rf planar‐magnetron sputtering.” Journal of Applied Physics, 51(6), 3113-3120.
[32] Gorla, C. R., Emanetoglu, N. W., Liang, S., Mayo, W. E., Lu, Y., Wraback, M., & Shen, H. (1999). “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112) sapphire by metalorganic chemical vapor deposition.” Journal of Applied Physics, 85(5), 2595-2602.
[33] Datta, S., & Das, B. (1990). “Electronic analog of the electro‐optic modulator.” Applied Physics Letters, 56, 665.
[34] Clark, N. A., & Lagerwall, S. T. (1980). “Submicrosecond bistable electro‐optic switching in liquid crystals.” Applied Physics Letters, 36, 899.
[35] Baxter, J. B., & Schmuttenmaer, C. A. (2006). “Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy.” The Journal of Physical Chemistry B, 110(50), 25229-25239.
[36] Norton, D. P., Heo, Y. W., Ivill, M. P., Ip, K., Pearton, S. J., Chisholm, M. F., & Steiner, T. (2004). “ZnO: growth, doping & processing.” Materials today, 7(6), 34-40.
[37] 吳朗,電子陶瓷:壓電陶瓷,民83,全欣資訊圖書公司。
[38] Johnson, M. K., & Smith, A. D. (1994). Encyclopedia of inorganic chemistry.Wiley, Chichester, 1896-1915.
[39] 黃昭棋。成長微奈米結構氧化鈷薄膜暨應用於氣體感測器之研究。民97,國立台灣科技大學材料科技研究所碩士論文。
[40] 莊柏青。Ge(111)上之氧化鈷/鈷介面與磁性研究。民95,國立中正大學物理研究所碩士論文。
[41] 莊志遠。氧化鈷奈米結構製備與其退火行為。民95,國立成功大學材料科學及工程學系碩士論文。
[42] The Piezoelectric Effect, PZT Application Manual.
[43] 江俊霖。體內壓電超聲波能量傳輸之研究。民101,國立臺灣大學工學院應用力學研究所碩士論文。
[44] MEMS1049, Mechatronics, Chapter 9, Vibration sensors.
[45] Williams, C. B., & Yates, R. B. (1996). “Analysis of a micro-electric generator for microsystems.” Sensors and Actuators A: Physical, 52(1), 8-11.
[46] Lee, K. Y., Kumar, B., Seo, J. S., Kim, K. H., Sohn, J. I., Cha, S. N., ... & Kim, S. W. (2012). “P-Type polymer-hybridized high-performance piezoelectric nanogenerators.” Nano letters, 12(4), 1959-1964.
[47] 蔡億達。PZT:Nb陶瓷之製作及其在表面聲波濾波器的應用。民92,國立成功大學電機工程研究所碩士論文。
[48] Davidse, P. D. (1967). “Theory and practice of RF sputtering.” Vacuum, 17(3), 139-145.
[49] 林麗娟,X光繞射原理及其應用,民83,工業材料86期。
[50] 鄧建龍,姚潔宜,張茂男。X光繞射分析在半導體工業上的應用。民97,奈米通訊第十五卷第四期。
[51] 許明祺,高基迪,蔡嘉慶,林姿伶。掃描式電子顯微鏡(SEM)、X光微區分析(EDS)、掃描探針顯微術(STM/AFM)。
[52] 劉宗翰,吳坤憲。EDS原理。
[53] AFM, Department of Pharmacology, University of Virginia.
[54] Nanotechnology/AFM, wikibooks.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58821-
dc.description.abstract近年來,而由於生態環境的監測、災害預警系統的構建及智慧型生活空間的發展,多點分佈無線監測網路的佈置已成必然。然而,成熟的無線通訊技術和低功率消耗電路的發展,使得感測器的用電量大幅降低。且許多微機電系統結構與遠紅外線裝置因有電池更換不易、使用壽命不長等問題。故期望能夠將這些裝置整合為自給供電裝置。
本研究開發一可操作於低頻下之氧化鋅壓電換能器,氧化鋅薄膜採用射頻濺鍍法沉積於80μm厚度的軟性鈦基板上。藉由XRD、SEM、EDS及AFM之量測可得知,氧化鋅薄膜及氧化鈷薄膜皆分別成功的沉積於鈦基板及ZnO/Ti上,且利用本實驗的濺鍍參數,沉積於鈦基板上之氧化鋅呈現完美的c軸(002)優選取向,亦呈現緻密的表面結構。
另一方面,本研究亦利用n型氧化鋅半導體(ZnO)及p型氧化鈷半導體(Co3O4)之結合來製作一p-n型壓電換能器。兩者之接合使其介面形成一p-n 接面(p-n junction),可想像成兩電容串聯,其阻抗降低,而使其電壓增加。並可藉由兩者能階之不同,使其壓電換能器在操作時於兩電極間形成一能階差,利用這樣的方式,可以有效的增加其發電效率。由實驗結果可得知,在相同應變下,p-n型壓電換能器的輸出電壓約為氧化鋅壓電換能器之1.5倍,最大功率輸出則約為10.6倍。
zh_TW
dc.description.abstractEnabling technologies for wireless sensor networks have gained considerable attention in research communities over the past few years. With the development of the low powered small wireless electronic devices, it is highly desirable, even necessary in certain situations, for wireless sensor nodes to be self-powered.
This research develops a ZnO piezoelectric transducers that can be operated in low frequency. A ZnO films and Co3O4 films were well-deposited on flexible titanium (Ti) foil of 80 μm and ZnO/Ti structure. The ZnO deposited on Ti foil performed a best piezoelectric coefficient at the specific sputtering parameters, and showed a good textured structure via XRD, SEM, EDS and AFM measurements.
However, we utilize n-type zinc oxide (ZnO) and p-type cobalt oxide (Co3O4) to develop a p-n type piezoelectric transducers. The Co3O4-ZnO interface forms a p-n junction. When two capacitors are connected in series, their overall capacitance is less than that of either. It can reduce the impedance to enhance the output voltage. Also, it can increase the difference in Fermi levels between two electrodes. This structure enhances the output power efficiently. From the experiment results, the output voltage and power of the p-n type piezoelectric transducer is around 1.5 times and 10.6 times of ZnO piezoelectric transducers at the same strain respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:32:57Z (GMT). No. of bitstreams: 1
ntu-102-R00543015-1.pdf: 10460605 bytes, checksum: 761da72a011b0496978944b381206d97 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書.....i
誌謝.....ii
摘要.....iii
Abstract.....iv
目錄.....v
圖目錄.....ix
表目錄.....xii
第一章 緒論.....1
1.1 前言.....1
1.2 文獻回顧.....4
1.3 研究目的.....8
第二章 理論與原理.....10
2.1晶體學.....10
2.1.1晶體之體系與晶格.....10
2.1.2晶體之點群(Point groups).....12
2.1.3 氧化鋅之晶體結構與特性.....14
2.1.4 氧化鈷之晶體結構與特性.....16
2.2 壓電效應.....18
2.2.1壓電材料.....19
2.2.2壓電本構方程式.....21
2.3 壓電換能器原理.....26
2.3.1懸臂樑振動模型.....28
2.3.2 p-n型壓電換能器原理.....30
2.3.3機電耦合係數 (Electromechanical coefficient, EMC).....32
2.3.4品質因數 (Quality Factor, Q factor).....32
2.4射頻濺鍍原理.....33
2.5整流濾波電路.....34
2.6檢測儀器設備原理.....35
2.6.1 X光繞射儀 (X-Ray Diffraction, XRD).....36
2.6.2掃描式電子顯微鏡 (Scanning Electronic Microscope, SEM).....37
2.6.3能量散射光譜儀 (Energy Dispersive X-Ray Spectrometer, EDS).....38
2.6.4 原子力顯微鏡 (Atomic Force Microscope, AFM).....39
第三章 實驗方法.....42
3.1鈦基板清洗流程與製備.....42
3.2氧化鋅及氧化鈷薄膜製備.....43
3.2.1氧化鋅壓電薄膜之濺鍍.....43
3.2.2氧化鈷薄膜之濺鍍.....44
3.3氧化鋅薄膜熱處理流程.....45
3.4上電極濺鍍流程.....45
3.5薄膜品質量測與分析.....46
3.5.1探針式表面輪廓量測.....47
3.5.2 X光繞射分析.....48
3.5.3掃描式電子顯微鏡分析.....50
3.5.4能量散射光譜檢測.....51
3.5.5原子力顯微鏡量測.....52
3.6電訊號量測流程.....53
3.6.1懸臂樑自由端位移量測.....54
3.6.2開迴路電壓量測.....56
3.6.3並聯不同負載之電壓量測.....57
3.6.4整流後之電壓量測.....57
3.6.5輸出功率量測.....58
第四章 結果與討論.....59
4.1薄膜性質量測與分析.....59
4.1.1換能器各層之薄膜厚度.....59
4.1.2氧化鋅及氧化鈷薄膜之晶向排列與排向.....60
(1)氧化鋅薄膜.....61
(2)氧化鈷薄膜.....62
4.1.3氧化鋅及氧化鈷薄膜之表面型態.....64
(1)氧化鋅薄膜.....64
(2)氧化鈷薄膜.....65
4.1.4氧化鋅及氧化鈷薄膜之元素成分.....66
(1)氧化鋅薄膜.....66
(2)氧化鈷薄膜.....68
4.1.5氧化鋅及氧化鈷薄膜之表面粗糙度.....69
(1)氧化鋅薄膜.....70
(2)氧化鈷薄膜.....71
4.2氧化鋅壓電換能器之電訊號.....72
4.2.1操作於不同頻率下之電壓訊號.....72
4.2.2懸臂樑自由端位移量測及應變計算.....73
4.2.3不同負載下之電壓訊號及功率.....75
4.2.4不同應變下之電壓訊號及功率.....76
4.2.5不同頻率下之功率及品質因素計算.....77
4.3氧化鈷/氧化鋅p-n型壓電換能器之電訊號.....78
4.3.1操作於不同頻率下之電壓訊號.....78
4.3.2懸臂樑自由端位移量測及應變計算.....79
4.3.3不同負載下之電壓訊號及功率.....81
4.3.4不同應變下之電壓訊號及功率.....81
4.3.5不同頻率下之功率及品質因素計算.....83
4.3.6不同應變下之整流電壓訊號.....84
4.4氧化鋅壓電換能器與p-n型壓電換能器之比較.....85
第五章 結論與未來展望.....87
5.1 結論.....87
5.2 未來展望.....88
參考文獻.....90
dc.language.isozh-TW
dc.subject氧化鋅zh_TW
dc.subjectp-n接面zh_TW
dc.subject氧化鈷zh_TW
dc.subject壓電材料zh_TW
dc.subject壓電換能器zh_TW
dc.subjectp-n junctionen
dc.subjectCo3O4en
dc.subjectZnOen
dc.subjectPiezoelectric materialsen
dc.subjectpiezoelectric transducersen
dc.title以氧化鈷/氧化鋅製作p-n型壓電換能器之研究zh_TW
dc.titleResearch of the Co3O4/ZnO p-n Type Piezoelectric Transducersen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee施文彬(Wen-Pin Shih),胡毓忠(Yuh-Chung Hu),林大偉(Tai-Wei Lin)
dc.subject.keyword壓電材料,壓電換能器,氧化鋅,氧化鈷,p-n接面,zh_TW
dc.subject.keywordPiezoelectric materials,piezoelectric transducers,ZnO,Co3O4,p-n junction,en
dc.relation.page95
dc.rights.note有償授權
dc.date.accepted2013-12-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
10.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved