請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58816完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林祥泰(Shiang-Tai Lin) | |
| dc.contributor.author | Cheng-Ting Lee | en |
| dc.contributor.author | 李政廷 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:32:39Z | - |
| dc.date.available | 2020-07-21 | |
| dc.date.copyright | 2020-07-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-10 | |
| dc.identifier.citation | 1. Abrams, D.S. and Prausnitz, J.M., Statistical Thermodynamics of Liquid-Mixtures - New Expression for Excess Gibbs Energy of Partly or Completely Miscible Systems. Aiche Journal, 1975. 21(1): p. 116-128. 2. Fredenslund, A.; Jones, R.L., and Prausnitz, J.M., Group-Contribution Estimation of Activity-Coefficients in Nonideal Liquid-Mixtures. Aiche Journal, 1975. 21(6): p. 1086-1099. 3. Renon, H. and Prausnitz, J.M., Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. Aiche Journal, 1968. 14(1): p. 135-+. 4. Klamt, A., Conductor-Like Screening Model for Real Solvents - a New Approach to the Quantitative Calculation of Solvation Phenomena. Journal of Physical Chemistry, 1995. 99(7): p. 2224-2235. 5. Lin, S.-T. and Sandler, S.I., A Priori Phase Equilibrium Prediction from a Segment Contribution Solvation Model. Industrial Engineering Chemistry Research, 2002. 41(5): p. 899-913. 6. Chen, Y.; Zhou, S.M.; Chen, H.; Wang, Y.C., and Li, L.B., Extraction of O-, M- and P-Cresol from Aqueous Solution with Methyl Isopropyl Ketone: Equilibrium, Correlations, and Cosmo-Rs Predictions. Journal of Chemical Thermodynamics, 2017. 115: p. 180-190. 7. Hadj-Kali, M.K.; Hizaddin, H.F.; Wazeer, I.; El Blidi, L.; Mulyono, S., and Hashim, M.A., Liquid-Liquid Separation of Azeotropic Mixtures of Ethanol/Alkanes Using Deep Eutectic Solvents: Cosmo-Rs Prediction and Experimental Validation. Fluid Phase Equilibria, 2017. 448: p. 105-115. 8. Fingerhut, R.; Chen, W.L.; Schedemann, A.; Cordes, W.; Rarey, J.; Hsieh, C.M.; Vrabec, J., and Lin, S.T., Comprehensive Assessment of Cosmo-Sac Models for Predictions of Fluid-Phase Equilibria. Industrial Engineering Chemistry Research, 2017. 56(35): p. 9868-9884. 9. Ding, H.; Ke, W.J.; Zhao, D.; Wang, L.L.; Gao, Y.J., and Liu, S.J., Isobaric Vapor-Liquid Equilibrium for Binary System of Methyl Caprate Plus Methyl Laurate at 2, 4 and 6 Kpa. Journal of Chemical Thermodynamics, 2018. 116: p. 241-247. 10. Klamt, A. and Schuurmann, G., Cosmo - a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. Journal of the Chemical Society-Perkin Transactions 2, 1993(5): p. 799-805. 11. Islam, M.R. and Chen, C.-C., Cosmo-Sac Sigma Profile Generation with Conceptual Segment Concept. Industrial Engineering Chemistry Research, 2014. 54(16): p. 4441-4454. 12. Liang, Y.; Xiong, R.; Sandler, S.I., and Di Toro, D.M., Quantum Chemically Estimated Abraham Solute Parameters Using Multiple Solvent-Water Partition Coefficients and Molecular Polarizability. Environ Sci Technol, 2017. 51(17): p. 9887-9898. 13. Chen, W.L. and Lin, S.T., Explicit Consideration of Spatial Hydrogen Bonding Direction for Activity Coefficient Prediction Based on Implicit Solvation Calculations. Phys Chem Chem Phys, 2017. 19(31): p. 20367-20376. 14. Lin, S.T.; Wang, L.H.; Chen, W.L.; Lai, P.K., and Hsieh, C.M., Prediction of Miscibility Gaps in Water/Ether Mixtures Using Cosmo-Sac Model. Fluid Phase Equilibria, 2011. 310(1-2): p. 19-24. 15. Chen, Y.; Zhou, S.M.; Wang, Y.C., and Li, L.B., Screening Solvents to Extract Phenol from Aqueous Solutions by the Cosmo-Sac Model and Extraction Process Simulation. Fluid Phase Equilibria, 2017. 451: p. 12-24. 16. Islam, M.R.; Hao, Y.F.; Wang, M., and Chen, C.C., Prediction of Asphaltene Precipitation in Organic Solvents Via Cosmo-Sac. Energy Fuels, 2017. 31(9): p. 8985-8996. 17. Chen, W.L.; Hsieh, C.M.; Yang, L.; Hsu, C.C., and Lin, S.T., A Critical Evaluation on the Performance of Cosmo-Sac Models for Vapor-Liquid and Liquid-Liquid Equilibrium Predictions Based on Different Quantum Chemical Calculations. Industrial Engineering Chemistry Research, 2016. 55(34): p. 9312-9322. 18. Lin, S.T.; Chang, J.; Wang, S.; Goddard, W.A., and Sandler, S.I., Prediction of Vapor Pressures and Enthalpies of Vaporization Using a Cosmo Solvation Model. Journal of Physical Chemistry A, 2004. 108(36): p. 7429-7439. 19. Hsieh, M.T. and Lin, S.T., A Predictive Model for the Excess Gibbs Free Energy of Fully Dissociated Electrolyte Solutions. Aiche Journal, 2011. 57(4): p. 1061-1074. 20. Ingram, T.; Gerlach, T.; Mehling, T., and Smirnova, I., Extension of Cosmo-Rs for Monoatomic Electrolytes: Modeling of Liquid-Liquid Equilibria in Presence of Salts. Fluid Phase Equilibria, 2012. 314: p. 29-37. 21. Chen, C.S. and Lin, S.T., Prediction of Ph Effect on the Octanol-Water Partition Coefficient of Ionizable Pharmaceuticals. Industrial Engineering Chemistry Research, 2016. 55(34): p. 9284-9294. 22. Gerlach, T.; Muller, S., and Smirnova, I., Development of a Cosmo-Rs Based Model for the Calculation of Phase Equilibria in Electrolyte Systems. Aiche Journal, 2018. 64(1): p. 272-285. 23. Wang, S.; Song, Y.H., and Chen, C.C., Extension of Cosmo-Sac Solvation Model for Electrolytes. Industrial Engineering Chemistry Research, 2011. 50(1): p. 176-187. 24. Lee, B.S. and Lin, S.T., A Priori Prediction of Dissociation Phenomena and Phase Behaviors of Ionic Liquids. Industrial Engineering Chemistry Research, 2015. 54(36): p. 9005-9012. 25. Chang, C.K. and Lin, S.T., Improved Prediction of Phase Behaviors of Ionic Liquid Solutions with the Consideration of Directional Hydrogen Bonding Interactions. Industrial Engineering Chemistry Research, 2020. 59(8): p. 3550-3559. 26. Lee, B.S. and Lin, S.T., The Origin of Ion-Pairing and Redissociation of Ionic Liquid. J Phys Chem B, 2017. 121(23): p. 5818-5823. 27. Lee, B.S. and Lin, S.T., Prediction of Phase Behaviors of Ionic Liquids over a Wide Range of Conditions. Fluid Phase Equilibria, 2013. 356: p. 309-320. 28. Tsai, Y.R. and Lin, S.T., Prediction and Reasoning for the Occurrence of Lower Critical Solution Temperature in Aqueous Solution of Ionic Liquids. Industrial Engineering Chemistry Research, 2019. 58(23): p. 10064-10072. 29. Lee, B.-S. and Lin, S.-T., A Priori Prediction of the Octanol–Water Partition Coefficient (Kow) of Ionic Liquids. Fluid Phase Equilibria, 2014. 363: p. 233-238. 30. Zhou, Y.P.; Xu, D.M.; Zhang, L.Z.; Ma, Y.X.; Ma, X.L.; Gao, J., and Wang, Y.L., Separation of Thioglycolic Acid from Its Aqueous Solution by Ionic Liquids: Ionic Liquids Selection by the Cosmo-Sac Model and Liquid-Liquid Phase Equilibrium. Journal of Chemical Thermodynamics, 2018. 118: p. 263-273. 31. Jaschik, M.; Piech, D.; Warmuzinski, K., and Jaschik, J., Prediction of Gas Solubility in Ionic Liquids Using the Cosmo-Sac Model. Chemical and Process Engineering-Inzynieria Chemiczna I Procesowa, 2017. 38(1): p. 19-30. 32. Lee, B.S. and Lin, S.T., Screening of Ionic Liquids for Co2 Capture Using the Cosmo-Sac Model. Chemical Engineering Science, 2015. 121: p. 157-168. 33. Yang, L.; Xu, X.C.; Peng, C.J.; Liu, H.L., and Hu, Y., Prediction of Vapor-Liquid Equilibrium for Polymer Solutions Based on the Cosmo-Sac Model. Aiche Journal, 2010. 56(10): p. 2687-2698. 34. Kuo, Y.C.; Hsu, C.C., and Lin, S.T., Prediction of Phase Behaviors of Polymer-Solvent Mixtures from the Cosmo-Sac Activity Coefficient Model. Industrial Engineering Chemistry Research, 2013. 52(37): p. 13505-13515. 35. Tukur, N.; Waziri, S., and Hamad, E., Predicting Solubilities in Polymer Systems Using Cosmo-Rs. AIChE Annual Meeting, Conference Proceedings, 2005. 36. Loschen, C. and Klamt, A., Prediction of Solubilities and Partition Coefficients in Polymers Using Cosmo-Rs. Industrial Engineering Chemistry Research, 2014. 53(28): p. 11478-11487. 37. Lee, B.S. and Lin, S.T., Prediction and Screening of Solubility of Pharmaceuticals in Single- and Mixed-Ionic Liquids Using Cosmo-Sac Model. Aiche Journal, 2017. 63(7): p. 3096-3104. 38. Wang, L.H. and Lin, S.T., A Predictive Method for the Solubility of Drug in Supercritical Carbon Dioxide. Journal of Supercritical Fluids, 2014. 85: p. 81-88. 39. Klamt, A., Solvent-Screening and Co-Crystal Screening for Drug Development with Cosmo-Rs. Journal of Cheminformatics, 2012. 4(S1). 40. Shu, C.C. and Lin, S.T., Prediction of Drug Solubility in Mixed Solvent Systems Using the Cosmo-Sac Activity Coefficient Model. Industrial Engineering Chemistry Research, 2011. 50(1): p. 142-147. 41. Hsieh, C.-M.; Wang, S.; Lin, S.-T., and Sandler, S.I., A Predictive Model for the Solubility and Octanol−Water Partition Coefficient of Pharmaceuticals. Journal of Chemical Engineering Data, 2011. 56(4): p. 936-945. 42. Chen, C.C., Toward Development of Activity Coefficient Models for Process and Product Design of Complex Chemical Systems. Fluid Phase Equilibria, 2006. 241(1-2): p. 103-112. 43. Sandler, S.I., Chemical, Biochemical, and Engineering Thermodynamics. 4th ed. ed, ed. S.I. Sandler. 2006, Hoboken, N.J: John Wiley. 44. Calvar, N.; Gómez, E.; Domínguez, Á., and Macedo, E.A., Determination and Modelling of Osmotic Coefficients and Vapour Pressures of Binary Systems 1- and 2-Propanol with Cnmimntf2 Ionic Liquids (N=2, 3, and 4) at T=323.15k. The Journal of Chemical Thermodynamics, 2011. 43(8): p. 1256-1262. 45. Takechi, K.; Kato, Y., and Hase, Y., A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries. Adv Mater, 2015. 27(15): p. 2501-6. 46. Huie, M.M.; DiLeo, R.A.; Marschilok, A.C.; Takeuchi, K.J., and Takeuchi, E.S., Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry. ACS Appl Mater Interfaces, 2015. 7(22): p. 11724-31. 47. Qin, J.; Lan, Q.; Liu, N.; Men, F.; Wang, X.; Song, Z., and Zhan, H., A Metal-Free Battery with Pure Ionic Liquid Electrolyte. iScience, 2019. 15: p. 16-27. 48. Mallakpour, S. and Rafiee, Z., Ionic Liquids as Environmentally Friendly Solvents in Macromolecules Chemistry and Technology, Part I. Journal of Polymers and the Environment, 2011. 19(2): p. 447-484. 49. Meli, L.; Miao, J.J.; Dordick, J.S., and Linhardt, R.J., Electrospinning from Room Temperature Ionic Liquids for Biopolymer Fiber Formation. Green Chemistry, 2010. 12(11): p. 1883-1892. 50. Mochizuki, Y. and Sugawara, K., Removal of Organic Sulfur from Hydrocarbon Resources Using Ionic Liquids. Energy Fuels, 2008. 22(5): p. 3303-3307. 51. Pereiro, A.B.; Araujo, J.M.M.; Esperanca, J.M.S.S.; Marrucho, I.M., and Rebelo, L.P.N., Ionic Liquids in Separations of Azeotropic Systems - a Review. Journal of Chemical Thermodynamics, 2012. 46: p. 2-28. 52. Keskin, S.; Kayrak-Talay, D.; Akman, U., and Hortacsu, O., A Review of Ionic Liquids Towards Supercritical Fluid Applications. Journal of Supercritical Fluids, 2007. 43(1): p. 150-180. 53. Plechkova, N.V. and Seddon, K.R., Applications of Ionic Liquids in the Chemical Industry. Chem Soc Rev, 2008. 37(1): p. 123-50. 54. de Diego, A., Application of the Electrical Conductivity of Concentrated Electrolyte Solutions to Industrial Process Control and Design: From Experimental Measurement Towards Prediction through Modelling. TrAC Trends in Analytical Chemistry, 2001. 20(2): p. 65-78. 55. Chen, C.C. and Evans, L.B., A Local Composition Model for the Excess Gibbs Energy of Aqueous-Electrolyte Systems. Aiche Journal, 1986. 32(3): p. 444-454. 56. Fredenslund, A.; Gmehling, J.; Michelsen, M.L.; Rasmussen, P., and Prausnitz, J.M., Computerized Design of Multicomponent Distillation Columns Using the Unifac Group Contribution Method for Calculation of Activity Coefficients. Industrial Engineering Chemistry Process Design and Development, 1977. 16(4): p. 450-462. 57. Pitzer, K.S., Electrolytes - from Dilute-Solutions to Fused-Salts. Journal of the American Chemical Society, 1980. 102(9): p. 2902-2906. 58. Collins, K.D.; Neilson, G.W., and Enderby, J.E., Ions in Water: Characterizing the Forces That Control Chemical Processes and Biological Structure. Biophys Chem, 2007. 128(2-3): p. 95-104. 59. Pitzer, K.S. and Simonson, J.M., Thermodynamics of Multicomponent, Miscible, Ionic Systems - Theory and Equations. Journal of Physical Chemistry, 1986. 90(13): p. 3005-3009. 60. Pitzer, K.S., Thermodynamics of Electrolytes .1. Theoretical Basis and General Equations. Journal of Physical Chemistry, 1973. 77(2): p. 268-277. 61. Lebowitz, J.L. and Percus, J.K., Mean Spherical Model for Lattice Gases with Extended Hard Cores and Continuum Fluids. Physical Review, 1966. 144(1): p. 251- . 62. Chen, C.-C.; Britt, H.I.; Boston, J.F., and Evans, L.B., Local Composition Model for Excess Gibbs Energy of Electrolyte Systems. Part I: Single Solvent, Single Completely Dissociated Electrolyte Systems. AIChE Journal, 1982. 28(4): p. 588-596. 63. Song, Y.H. and Chen, C.C., Symmetric Nonrandom Two-Liquid Segment Activity Coefficient Model for Electrolytes. Industrial Engineering Chemistry Research, 2009. 48(11): p. 5522-5529. 64. Chen, C.C.; Simoni, L.D.; Brennecke, J.F., and Stadtherr, M.A., Correlation and Prediction of Phase Behavior of Organic Compounds in Ionic Liquids Using the Nonrandom Two-Liquid Segment Activity Coefficient Model. Industrial Engineering Chemistry Research, 2008. 47(18): p. 7081-7093. 65. Chen, C.C.; Bokis, C.P., and Mathias, P., Segment-Based Excess Gibbs Energy Model for Aqueous Organic Electrolytes. Aiche Journal, 2001. 47(11): p. 2593-2602. 66. Chen, C.C. and Song, Y.H., Generalized Electrolyte-Nrtl Model for Mixed-Solvent Electrolyte Systems. Aiche Journal, 2004. 50(8): p. 1928-1941. 67. Mortazavi-Manesh, S.; Taghikhani, V., and Ghotbi, C., A New Model in Correlating the Activity Coefficients of Aqueous Electrolyte Solutions with Ion Pair Formation. Fluid Phase Equilibria, 2007. 261(1-2): p. 313-319. 68. Ghotbi, C. and Vera, J.H., Extension to Mixtures of Two Robust Hard-Sphere Equations of State Satisfying the Ordered Close-Packed Limit. Canadian Journal of Chemical Engineering, 2001. 79(4): p. 678-686. 69. Held, C.; Cameretti, L.F., and Sadowski, G., Modeling Aqueous Electrolyte Solutions - Part 1. Fully Dissociated Electrolytes. Fluid Phase Equilibria, 2008. 270(1-2): p. 87-96. 70. Cameretti, L.F.; Sadowski, G., and Mollerup, J.M., Modeling of Aqueous Electrolyte Solutions with Perturbed-Chain Statistical Associated Fluid Theory. Industrial Engineering Chemistry Research, 2005. 44(9): p. 3355-3362. 71. Toure, O.; Lebert, A., and Dussap, C.G., Extension of the Cosmo-Rs-Pdhs Model to the Prediction of Activity Coefficients in Concentrated {Water-Electrolyte} and {Water-Polyol} Solutions. Fluid Phase Equilibria, 2016. 424: p. 90-104. 72. Chang, C.-K. and Lin, S.-T., Extended Pitzer–Debye–Hückel Model for Long-Range Interactions in Ionic Liquids. Journal of Chemical Engineering Data, 2019. 65(3): p. 1019-1027. 73. Chang, C.K.; Chen, W.L.; Wu, D.T., and Lin, S.T., Improved Directional Hydrogen Bonding Interactions for the Prediction of Activity Coefficients with Cosmo-Sac. Industrial Engineering Chemistry Research, 2018. 57(32): p. 11229-11238. 74. Gadre, S.R.; Kulkarni, S.A., and Shrivastava, I.H., Molecular Electrostatic Potentials - a Topographical Study. Journal of Chemical Physics, 1992. 96(7): p. 5253-5260. 75. Kulkarni, S.A., Electron Correlation Effects on the Topography of Molecular Electrostatic Potentials. Chemical Physics Letters, 1996. 254(3-4): p. 268-273. 76. Kumar, A.; Gadre, S.R.; Mohan, N., and Suresh, C.H., Lone Pairs: An Electrostatic Viewpoint. J Phys Chem A, 2014. 118(2): p. 526-32. 77. Mohan, N.; Suresh, C.H.; Kumar, A., and Gadre, S.R., Molecular Electrostatics for Probing Lone Pair-Pi Interactions. Phys Chem Chem Phys, 2013. 15(42): p. 18401-9. 78. Politzer, P. and Murray, J.S., The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules. Theoretical Chemistry Accounts, 2002. 108(3): p. 134-142. 79. Politzer, P.; Murray, J.S., and Peralta-Inga, Z., Molecular Surface Electrostatic Potentials in Relation to Noncovalent Interactions in Biological Systems. International Journal of Quantum Chemistry, 2001. 85(6): p. 676-684. 80. Suresh, C.H.; Alexander, P.; Vijayalakshmi, K.P.; Sajith, P.K., and Gadre, S.R., Use of Molecular Electrostatic Potential for Quantitative Assessment of Inductive Effect. Phys Chem Chem Phys, 2008. 10(43): p. 6492-9. 81. Ben-Naim, A., Solvation Thermodynamics. 1987. 82. Guggenheim, E.A., Mixtures; the Theory of the Equilibrium Properties of Some Simple Classes of Mixtures, Solutions and Alloys. Mixtures;, 1952. 83. Staverman, A.J., The Entropy of High Polymer Solutions - Generalization of Formulae. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society, 1950. 69(2): p. 163-174. 84. Hsieh, C.M.; Sandler, S.I., and Lin, S.T., Improvements of Cosmo-Sac for Vapor-Liquid and Liquid-Liquid Equilibrium Predictions. Fluid Phase Equilibria, 2010. 297(1): p. 90-97. 85. Petrucci, R.H.; Harwood, W.S., and Herring, F.G., General Chemistry: Principles and Modern Applications. 2002: Prentice Hall. 86. Pitzer, K.S.; Peiper, J.C., and Busey, R.H., Thermodynamic Properties of Aqueous Sodium-Chloride Solutions. Journal of Physical and Chemical Reference Data, 1984. 13(1): p. 1-102. 87. Barthel, J.; Gores, H.J.; Schmeer, G., and Wachter, R., Non-Aqueous Electrolyte-Solutions in Chemistry and Modern Technology. Topics in Current Chemistry-Series, 1983. 111: p. 33-144. 88. Barthel, J.; Krienke, H., and Kunz, W., Physical Chemistry of Electrolyte Solutions : Modern Aspects. 1998, Darmstadt; [New York]: Steinkopf ; Springer. 89. Design Institute for Physical Property, D., Dippr Project 801, Full Version : Evaluated Standard Thermophysical Property Values. 2005. 90. Lide, D.R., Crc Handbook of Chemistry and Physics, 89th Edition. 2008: Taylor Francis. 91. te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G., and Ziegler, T., Chemistry with Adf. Journal of Computational Chemistry, 2001. 22(9): p. 931-967. 92. Fonseca Guerra, C.; Snijders, J.G.; te Velde, G., and Baerends, E.J., Towards an Order- N Dft Method. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 1998. 99(6): p. 391-403. 93. Baerends, E.J.; Ziegler, T.; Atkins, A.J.; Autschbach, J.; Bashford, D.; Baseggio, O.; Brces, A.; Bickelhaupt, F.M.; Bo, C.; Boerritger, P.M.; Cavallo, L.; Daul, C.; Chong, D.P.; Chulhai, D.V.; Deng, L.; Dickson, R.M.; Dieterich, J.M.; Ellis, D.E.; van Faassen, M.; Ghysels, A.; Giammona, A.; van Gisbergen, S.J.A.; Goez, A.; Gtz, A.W.; Gusarov, S.; Harris, F.E.; van den Hoek, P.; Hu, Z.; Jacob, C.R.; Jacobsen, H.; Jensen, L.; Joubert, L.; Kaminski, J.W.; van Kessel, G.; Knig, C.; Kootstra, F.; Kovalenko, A.; Krykunov, M.; van Lenthe, E.; McCormack, D.A.; Michalak, A.; Mitoraj, M.; Morton, S.M.; Neugebauer, J.; Nicu, V.P.; Noodleman, L.; Osinga, V.P.; Patchkovskii, S.; Pavanello, M.; Peeples, C.A.; Philipsen, P.H.T.; Post, D.; Pye, C.C.; Ramanantoanina, H.; Ramos, P.; Ravenek, W.; Rodrguez, J.I.; Ros, P.; Rger, R.; Schipper, P.R.T.; Schlns, D.; van Schoot, H.; Schreckenbach, G.; Seldenthuis, J.S.; Seth, M.; Snijders, J.G., and Sol, Adf2017, Scm, Theoretical Chemistry, Vrije Universiteit, Amsterdam, the Netherlands, Https://Www.Scm.Com. 94. Delley, B., An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules. Journal of Chemical Physics, 1990. 92(1): p. 508-517. 95. Pye, C.C. and Ziegler, T., An Implementation of the Conductor-Like Screening Model of Solvation within the Amsterdam Density Functional Package. Theoretical Chemistry Accounts, 1999. 101(6): p. 396-408. 96. Lin, S.T. and Hsieh, C.M., Efficient and Accurate Solvation Energy Calculation from Polarizable Continuum Models. J Chem Phys, 2006. 125(12): p. 124103. 97. Hsieh, C.M. and Lin, S.T., First-Principles Predictions of Vapor-Liquid Equilibria for Pure and Mixture Fluids from the Combined Use of Cubic Equations of State and Solvation Calculations. Industrial Engineering Chemistry Research, 2009. 48(6): p. 3197-3205. 98. Hsieh, C.M. and Lin, S.T., Determination of Cubic Equation of State Parameters for Pure Fluids from First Principle Solvation Calculations. Aiche Journal, 2008. 54(8): p. 2174-2181. 99. Tiegs, D., Activity Coefficients at Infinite Dilution. Activity coefficients at infinite dilution /, 1986. 100. Gmehling, J.; Onken, U., and Arlt, W., Vapor-Liquid Equilibrium Data Collection. 1977, Frankfurt/Main; Flushing, N.Y.: Dechema ; Distributed by Scholium International. 101. Sørensen, J.M. and Arlt, W., Liquid-Liquid Equilibrium Data Collection. 1979. 102. Rankin, D.W.H., Crc Handbook of Chemistry and Physics, 89th Edition, Edited by David R. Lide. Crystallography Reviews, 2009. 15(3): p. 223-224. 103. Nordness, O.; Simoni, L.D.; Stadtherr, M.A., and Brennecke, J.F., Characterization of Aqueous 1-Ethyl-3-Methylimidazolium Ionic Liquids for Calculation of Ion Dissociation. J Phys Chem B, 2019. 123(6): p. 1348-1358. 104. Tokuda, H.; Hayamizu, K.; Ishii, K.; Abu Bin Hasan Susan, M., and Watanabe, M., Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 1. Variation of Anionic Species. Journal of Physical Chemistry B, 2004. 108(42): p. 16593-16600. 105. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M.A., and Watanabe, M., Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation. J Phys Chem B, 2005. 109(13): p. 6103-10. 106. Leu, M.K.; Vicente, I.; Fernandes, J.A.; de Pedro, I.; Dupont, J.; Sans, V.; Licence, P.; Gual, A., and Cano, I., On the Real Catalytically Active Species for Co2 Fixation into Cyclic Carbonates under near Ambient Conditions: Dissociation Equilibrium of [Bmim][Fe(No)2cl2] Dependant on Reaction Temperature. Applied Catalysis B: Environmental, 2019. 245: p. 240-250. 107. Dong, Q.; Muzny, C.D.; Kazakov, A.; Diky, V.; Magee, J.W.; Widegren, J.A.; Chirico, R.D.; Marsh, K.N., and Frenkel, M., Ilthermo: A Free-Access Web Database for Thermodynamic Properties of Ionic Liquids. Journal of Chemical and Engineering Data, 2007. 52(4): p. 1151-1159. 108. Kazakov, A.M., Nist Standard Reference Database 147: Nist Ionic Liquids Database—(Ilthermo). NIST Standard Reference Database 147: NIST Ionic Liquids Database—(ILThermo). 109. Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M., and Grimes, R., Advanced Inorganic Chemistry. Vol. 5. 1988: Wiley New York. 110. Marcus, Y., Ionic-Radii in Aqueous-Solutions. Chemical Reviews, 1988. 88(8): p. 1475-1498. 111. Simonin, J.P.; Bernard, O.; Krebs, S., and Kunz, W., Modelling of the Thermodynamic Properties of Ionic Solutions Using a Stepwise Solvation-Equilibrium Model. Fluid Phase Equilibria, 2006. 242(2): p. 176-188. 112. Marcus, Y., A Simple Empirical-Model Describing the Thermodynamics of Hydration of Ions of Widely Varying Charges, Sizes, and Shapes. Biophysical Chemistry, 1994. 51(2-3): p. 111-127. 113. Satheesan Babu, C. and Lim, C., A New Interpretation of the Effective Born Radius from Simulation and Experiment. Chemical Physics Letters, 1999. 310(1-2): p. 225-228. 114. Ohtaki, H. and Radnai, T., Structure and Dynamics of Hydrated Ions. Chemical Reviews, 1993. 93(3): p. 1157-1204. 115. Calvar, N.; Gómez, E.; Domínguez, Á., and Macedo, E.A., Vapour Pressures, Osmotic and Activity Coefficients for Binary Mixtures Containing (1-Ethylpyridinium Ethylsulfate+Several Alcohols) at T=323.15k. The Journal of Chemical Thermodynamics, 2010. 42(5): p. 625-630. 116. Shekaari, H. and Mousavi, S.S., Osmotic Coefficients and Refractive Indices of Aqueous Solutions of Ionic Liquids Containing 1-Butyl-3-Methylimidazolium Halide Att= (298.15 to 328.15) K. Journal of Chemical Engineering Data, 2009. 54(3): p. 823-829. 117. Lobo, V.M.M., Handbook of Electrolyte Solutions. 1989. 118. Robinson, R.A. and Stokes, R.H., Electrolyte Solutions. 2002. 119. Ferse, A., Numerical Values of Individual Activity Coefficients of Single-Ion Species in Concentrated Aqueous Electrolyte Solutions and the Attempt of a Qualitative Interpretation on a Model of Electrostatic Interaction. Journal of Solid State Electrochemistry, 2013. 17(5): p. 1321-1332. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58816 | - |
| dc.description.abstract | 本作藉由結合Pitzer-Debye-Hückel (PDH)理論和COSMO-SAC模型發展一通用於預測電解質和非電解質溶液中化學物質活性係數的熱力學模型。其中Pitzer-Debye-Hückel理論著重於描述溶液中帶電物質(如鈉離子、硝酸根)具有的遠程庫倫作用力。同時,利用分子電位分布(Molecular Electrostatic Potential Map, MESP)決定氫鍵方向性的COSMO-SAC模型則用於計算分子間短程交互作用力。該模型僅需要系統中物質的分子結構、每個原子的半徑以及一組通用參數來確定分子之間的交互作用力。利用計算出的交互作用力即可進一步求得活性係數以及相關的熱力學性質。除此之外,吾等發現如將單原子離子周邊的水合分子考慮至模型中,則能一定程度地改善電解質水溶液中熱力學性質的預測。因此,此模型能應用於幾乎所有種類的化學物質。本作使用大量電解質、非電解質和離子液體的相平衡數據評估此方法,包括氣液相平衡、液液相平衡、無限稀釋下的活性係數、辛醇-水分配係數、離子活性係數和滲透係數等熱力學性質,以確保模型的通用性。此方法能在缺少實驗數據的情況下,提供化工程序開發者一個更廣泛適用於各種溶液的活性係數模型。 | zh_TW |
| dc.description.abstract | A general model is developed for the prediction of activity coefficient of chemicals in both electrolyte and nonelectrolyte solutions. The method combines the thermodynamically consistent Pitzer–Debye-Hückel (PDH) theory for describing long-range Coulomb interactions that are important for charged species (e.g. Na+ and Cl-) and the COSMO-SAC model for short-range interactions. The model only requires the structure of molecules, the radius of each atom, and a universal set of parameters to determine the interactions between molecules. The activity coefficients and other relevant thermodynamics properties can then be obtained based on these interactions. It is worth mentioning that we consider the water hydration shell of monatomic ion in aqueous solution to improve the prediction from our former method. Therefore, the model is widely applicable to nearly all kinds of chemical species. We have validated the method using a large set of phase equilibrium data, including vapor−liquid equilibrium (VLE), liquid−liquid equilibrium (LLE), the infinite dilution activity coefficient (IDAC), the mean ionic activity coefficient (γ_±), the osmotic coefficient (ϕ^((m))) and the octanol−water partition coefficient (K_ow), encompassing nonelectrolytes, electrolytes, and ionic liquids. Thus, the method is very useful for the development of chemical processes involving both neutral and charged species when no experimental data is available. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:32:39Z (GMT). No. of bitstreams: 1 U0001-0907202016410100.pdf: 2634106 bytes, checksum: 35e068382eaa8e62b2af7201731ab693 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | Table of Contents
致謝 ii 中文摘要 iii Abstract iv Table of Contents v List of Figures viii List of Tables xii Chap 1 Introduction 1 1.1. The Importance of Thermodynamics Modeling in Chemical Engineering 1 1.2. From Neutral Species to Charged Species 3 Chap 2 Theory 7 2.1. The COSMO-SAC Model 7 2.1.1. Introduction of the Model 7 2.1.2. Segment interaction energy and σ-profile 9 2.2. The Extended PDH Model 12 Chap 3 Computational Details 16 3.1. Nonelectrolyte Solutions 16 3.2. Electrolytes and Ionic Liquids 18 3.2.1. Vapor Pressure, Mean Ionic Activity Coefficient, Degree of Dissociation and Osmotic Coefficient 18 3.2.2. COSMO Files for Ion Pairs 21 3.2.3. Radii of Monatomic Ions 22 3.2.4. Hydration Shell of Monatomic Ions 27 Chap 4 Results and Discussion 30 4.1. Validation of Nonelectrolyte Solutions 30 4.2. Validation of the Phase Behaviors of Ionic Liquid 39 4.3. Mixtures Containing Monatomic or Polyatomic Ions 50 4.3.1. The Prediction with Fine-tuned Radius Method 50 4.3.2. The Limitations of Fine-tuned Radius Method 54 4.3.3. The Prediction with Hydration Shell Method 58 4.4. Summary 64 Chap 5 Conclusion and Future Prospects 65 Appendix A. Detailed Calculation Procedure of the COSMOSACion Model 68 Appendix B. Detailed MIAC Results of Monatomic and Polyatomic Ions 73 Reference 79 | |
| dc.language.iso | en | |
| dc.subject | 活性係數 | zh_TW |
| dc.subject | 熱力學 | zh_TW |
| dc.subject | 離子液體 | zh_TW |
| dc.subject | 非電解質 | zh_TW |
| dc.subject | 電解質 | zh_TW |
| dc.subject | COSMO-SAC | zh_TW |
| dc.subject | 相行為 | zh_TW |
| dc.subject | COSMO-SAC | en |
| dc.subject | thermodynamics | en |
| dc.subject | phase behavior | en |
| dc.subject | ionic liquid | en |
| dc.subject | electrolyte | en |
| dc.subject | nonelectrolyte | en |
| dc.subject | activity coefficient | en |
| dc.title | 建構適用於電解質和非電解質溶液之活性係數模型 | zh_TW |
| dc.title | Development of a Unified Model for the Activity Coefficient of Electrolyte and Nonelectrolyte Solutions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝介銘(Chieh-Ming Hsieh),陳威霖(Wei-Lin Chen) | |
| dc.subject.keyword | 活性係數,熱力學,相行為,COSMO-SAC,電解質,非電解質,離子液體, | zh_TW |
| dc.subject.keyword | activity coefficient,thermodynamics,phase behavior,ionic liquid,electrolyte,nonelectrolyte,COSMO-SAC, | en |
| dc.relation.page | 88 | |
| dc.identifier.doi | 10.6342/NTU202001415 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0907202016410100.pdf 未授權公開取用 | 2.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
