Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王冑
dc.contributor.authorYu-Wen Chenen
dc.contributor.author陳俞彣zh_TW
dc.date.accessioned2021-05-16T16:17:59Z-
dc.date.available2013-08-20
dc.date.available2021-05-16T16:17:59Z-
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citationAlvera-Azcarate, A., A. Barth, M. Rixen, and J. M. Beckers, 2005:”Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature”, Ocean Modelling, 9, 325-346.
Barrick, D. E., M. W. Evans, B. L. Weber, 1977:”Ocean Surface Currents Mapped by Radar”, Science, 198, 138–144.
Beckers, J. M., and M. Rixen, 2003:”EOF Calculations and Data Filling from Incomplete Oceanographic Datasets*”, Journal of Atmospheric and Oceanic Technology, 20, 1839-1856.
Bendat, Julius S., and Allan G. Piersol, 1971:“Random data: analysis and measurement procedures”, John Wiley & Sons, New York.
Boyd, Janice D., Eileen P. Kennelly, and Pavel Pistek, 1994:”Estimation of EOF expansion coefficients from incomplete data”, Deep-Sea Research Part I: Oceanographic Research Papers, 41.10, 1479-1488.
Bretherton, Francis P., Russ E. Davis, and C. B. Fandry, 1976:”A technique for objective analysis and design of oceanographic experiments applied to MODE-73*”, Deep Sea Reasearch and Oceanographic Abstracts, 23, 559-582.
Bui-Thanh, T., M. Damodaran, and K. Willcox, 2004:”Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition”, AIAA Journal, 42.8, 1505-1516.
Dong, D., P. Fang, Y. Bock, F. Webb, L. Prawirodirdjo, S. Kedar, and P. Jamason, 2006:”Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis”, Journal of Geophysical Research, 111, B03405, doi: 10.1029/2005JB003806.
Defant, Albert, 1961:”Physical oceanography; volume 2”, Pergamon Press.
Emery, Brian M., Libe Washburn, and Jack A. Harlan, 2004:”Evaluating Radial Current Measurements from CODAR High-Frequency Radars with Moored Current Meters*”, Journal of Atmospheric and Oceanic Technology, 21, 1259-1271.
Emery, Brian M., Libe Washburn, Milton S. Love, Mary M. Nishimoto, and J. Carter Ohlmann, 2006:”Do oil and gas platforms off California reduce recruitment of bocaccio (Sebastes paucispinis) to natural habitat? An analysis based on trajectories derived from high-frequency radar”, Fishery Bulletin, 104.3, 391-400.
Fang, Y.-C, J. Wang, Y.-J. Yang, J.-C. Mau, and M.-J. Huang, 2011:”Preliminary Results of CODAR Surface Current Observations Northeast of Taiwan”, 2011 International Workshop on Operating System for Marine Environment Monitoring and Forecasting, National Kaohsiung Marine University, College of Ocean Engineering, Kaohsiung, 59-77.
Fukunaga, Keinosuke, 1990:”Introduction to Statistical Pattern Recognition, Second Edition”, Academic Press.
Gurgel, K.-W., G. Antonischki, H.-H. Essen, and T. Schlick, 1999:”Wellen Radar (WERA): a new ground-wave HF radar for ocean remote sensing”, Coastal Engineering, 37, 219-234.
Han, Jiawei, and Micheline Kamber, 2006:”Data Mining: Concepts and Techniques, Second Edition”, Morgan Kaufmann Publishers, 61-62.
Hardy, Donald M., 1977:”Empirical eigenvector analysis of vector observations”, Geophysical Research Letters, 4.8, 319-320.
Holmes, Philip, John L. Lumley, and Gal Berkooz, 1996:”Turbulence, Coherent Structures, Dynamical Systems and Symmetry”, Cambridge University Press.
Jan, Sen., Joe Wang, Ching-Sheng Chern, and Shenn-Yu Chao, 2002:”Seasonal variation of the circulation in the Taiwan Strait”, Journal of Marine Systems, 35, 249-268.
Jan, Sen, Ching-Sheng Chern, Joe Wang, and Ming-Da Chiou, 2012:”Generation and propagation of baroclinic tides modified by the Kuroshio in the Luzon Strait”, Journal of Geophysical Research, 117, C02019, doi: 10.1029/2011JC007229.
Kaihatu, James M., Robert A. Handler, George O. Marmorino, and Lynn K. Shay, 1998:”Empirical Orthogonal Function Analysis of Ocean Surface Currents Using Complex and Real-Vector Methods*”, Journal of Atmospheric and Oceanic Technology, 15, 927-941.
Kaplan, Alexey, Yochanan Kushnir, Mark A. Cane, and M. Benno Blumenthal, 1997:”Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperatures”, Journal of Geophysical Research, 102.C13, 27835-27860.
Kerschen, Gaetan, Jean-Claude Golinval, Alexander F. Vakakis, and Lawrence A. Bergman, 2005:”The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview”, Nonlinear Dynamics, 41, 147-169.
Kohut, Josh, Scott Glenn, and Don Barrick, 1999:”SeaSonde Is Integral to Coastal Flow Model Development”, Hydro International, 3.3, 32-35.
Kohut, Josh T., and Scott M. Glenn, 2003:”Improving HF Radar Surface Current Measurements with Measured Antenna Beam Patterns”, Journal of Atmospheric and Oceanic Technology, 20, 1303-1316.
Kondrashov, D., and M. Ghil, 2006:”Spatio-temporal filling of missing points in geophysical data sets”, Nonlinear Processes in Geophysics, 13, 151-159.
Kundu, Pijush K., J. S. Allen, and Robert L. Smith, 1975:”Model Decomposition of the Velocity Field near the Oregon Coast”, Journal of Physical Oceanography, 5, 683-704.
Kundu, Pijush K., and J. S. Allen, 1976:”Some Three-Dimensional Characteristics of Low-Frequency Current Fluctuations near the Oregon Coast”, Journal of Physical Oceanography, 6, 181-199.
Kutzbach, John E., 1967:”Empirical Eigenvectors of Sea-Level Pressure, Surface Temperature and Precipitation Complexes over North America”, Journal of Applied Meteorology, 6, 791-802.
Metropolis, Nicholas, and S. Ulam, 1949:”The Monte Carlo Method”, Journal of the American Statistical Association, 44.247, 335-341.
Oliveira, P., and L. Gomes, 2010:”Interpolation of signals with missing data using Principal Component Analysis”, Multidimensional Systems and Signal Processing, 21, 25-43, doi: 10.1007/s11045-009-0086-3.
Paduan, Jeffrey D., and Leslie K. Rosenfeld, 1996:”Remotely sensed surface currents in Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application Radar)”, Journal of Geophysical Research, 101.C9, 20669-20686.
Pawlowicz, Rich, Bob Beardsley, and Steve Lentz, 2002:”Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE”, Computers & Geosciences, 28, 929-937.
Preisendorfer, Rudolph W., 1998:”Principal Component Analysis in Meteorology and Oceanography”, Elsevier.
Ramp, Steven R., Donald E. Barrick, Tomotaka Ito, and Michael S. Cook, 2008:”Variability of the Kuroshio Current south of Sagami Bay as observed using long-range coastal HF radars”, Journal of Geophysical Research, 113, C06024, doi: 10.1029/2007JC004132.
Reynolds, Richard W., and Thomas M. Smith, 1994:”Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation”, Journal of Climate, 7, 929-948.
Smith, Thomas M., Richard W. Reynolds, Robert E. Livezey, and Diane C. Stokes, 1996:”Reconstruction of Historical Sea Surface Temperatures Using Empirical Orthogonal Functions”, Journal of Climate, 9, 1403-1420.
Snihir, Iryna, William Rey, Evgeny Verbitskiy, Afifa Belfadhel-Ayeb, Peter H. L. Notten, 2006:”Battery open-circuit voltage estimation by a method of ststistical analysis”, Journal of Power Sources, 159, 1484-1487.
Teague, Calvin C., John. F. Vesecky, and Daniel M. Fernandez, 1997:”HF Radar Instruments, Past to Present”, Oceanography, 10.2, 40-44.
Tiampo, K. F., J. B. Rundle, W. Klein, Y. Ben-Zion, and S. McGinnis, 2004:”Using Eigenpattern Analysis to Constrain Seasonal Signals in Southern California”, Pure and applied geophysics, 161, 1991-2003.
劉文俊,1999:”臺灣的潮汐”,自費出版。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5878-
dc.description.abstract高頻雷達是近代廣用的一種即時監測海流的遙測工具,但高頻雷達訊號常因環境雜訊以及電離層等干擾影響,會造成在觀測區內出現海流觀測值缺漏的情況,因此如何有效填補缺漏值即成為海流監測即時作業一個重要的課題。本文使用臺灣大學海洋所、海軍軍官學校以及海軍大氣海洋局共同合作在臺灣東北部海域建置的CODAR雷達系統觀測資料做為研究的根據。
  我們選用實向量經驗正交函數(real-vector EOF)及Karhunen-Loeve展開法(KLE)兩種統計方法探討流場填補缺漏值問題。這兩種方法均是根據長期觀測資料之變量統計求出對應之特徵向量(eigenvector)作為模組(mode)基底,而觀測資料在各基底之投影即為該模組之振幅(amplitude)。經比較分析後,我們選用前20組模組(可解釋96%以上的總變異量),分別使用最小平方法(least square)與迭代法(iteration)以求解不完整資料情形下各模組之振幅,並以此進行不同個數缺漏值之填補實驗,以檢驗填補效果及填補誤差,藉以推測使用不同方法之缺漏個數上限。
  填補實驗的統計結果顯示,以最小平方法進行填補實驗時,在缺漏個數小於資料點總數之57%的情況下,其誤差隨缺漏點個數的變化並不大,若以迭代法搭配實向量EOF法或是KLE法分別進行填補,則誤差會隨缺漏點個數變多而呈線性增長,不過各方法在空間上之分佈皆甚為類似,在離雷達站較近處誤差較小;四種方法中以最小平方法配合實向量EOF法填補後之誤差相對較小,效果較佳。當缺漏個數為資料點總數之57%時,最小平方法填補後所得之誤差開始變得明顯,當缺漏個數達資料點總數之71%以上時,其變化趨勢會呈指數成長;而迭代法的實驗結果則是幾乎在所有缺漏情況下,其誤差皆大於最小平方法的誤差。在缺漏個數為資料點總數之71%以上的情形時,這些方法均不適合用來填補缺漏值。
zh_TW
dc.description.abstractThe Coastal Ocean Dynamics Applications Radar (CODAR) is a High-Frequency (HF) radar system with compact antennas. Recently, CODAR becomes widely used, for monitoring ocean surface currents remotely in nearly real time; its ability of large coverage on ocean surface and high resolution both in time and in space, makes CODAR an ideal tool for the operational oceanography, such as now-cast of currents and data-assimilation tasks. However, environmental effects such as interferences from obstacles, and/or from ionospheric disturbances, often hampers or weakens the strength of CODAR system, might deteriorate the data quality of CODAR, inducing incomplete datasets with missing data or holes in the designated observation region. The development of appropriate methodology for filling missing data is therefore a necessity deserving for further studies, in prior to the development of operational framework.
In the context, we have analyzed a nearly two-year long dataset of CODAR, which was observed by two HF radars located at Suao and Han-Ben, respectively, and provided by the Surface Current Observations at North-East Taiwan (SCONET) project; basic statistics of the measurements show that the SCONET dataset satisfies the normality and weakly stationary condition. Further processing, by using both modal decomposition methods of Real-vector Empirical Orthogonal Function (REOF) and the Karhuren-Loeve Expansion (KLE), respectively, reveals that almost more than 96% of total variances of currents in the whole observation region can be interpreted by the first 20 modes of both methods. Therefore the first 20 modes of both methods are used for data reconstruction and data filling later.
An independent month-long time series of CODAR measurements is adopted for the data filling experiment, by which the incomplete dataset is generated by depleting artificially assigned grid points in the original complete dataset, the measurements are therefore treated as the ground truth for later comparison. Monte Carlo simulation is used for the tests of data filling experiment when the missing points of data exceed 3 points. We have used both the EOF and the KLE methods, in accompany with the least square and the iteration procedures for the estimation of the amplitude of each modes, for the study of data filling experiment. Results show that the EOF method in accompany with the least square procedure is the best among the four methodologies, when the percentage of occurrence of the missing data is less than 57% of the whole dataset. However, all these four methods are not adequate for filling incomplete dataset, if the percentage of occurrence of the missing data exceeds 71%.
en
dc.description.provenanceMade available in DSpace on 2021-05-16T16:17:59Z (GMT). No. of bitstreams: 1
ntu-102-R00241101-1.pdf: 3230192 bytes, checksum: c88ddcd7e6a448eabf11270ada663da3 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
目 錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 高頻雷達測流簡介 1
1.2 臺灣東北海域CODAR系統簡介 4
1.3 缺漏值填補相關之文獻回顧 8
1.4 論文內容架構 9
第二章 資料統計特性 11
2.1 資料來源 11
2.2 時間域基本統計 18
2.3 頻率域分析以及濾潮處理 25
2.4 平穩性檢定 30
第三章 模分析方法與分析結果 35
3.1 經驗正交函數 35
3.2 Karhunen-Loeve展開法 47
3.3 以模重組法填補資料缺漏 58
3.3.1 最小平方法 58
3.3.2 迭代法 60
第四章 模擬實驗與結果討論 62
4.1 實驗設計 62
4.2 窮舉法實驗:任意1~3個資料點缺漏 66
4.3 蒙地卡羅法之實驗:多個資料點出現缺漏 74
4.4. 綜合討論 79
第五章 結論 85
參考文獻 87
dc.language.isozh-TW
dc.subject填補缺值zh_TW
dc.subject高頻雷達zh_TW
dc.subjectCODARzh_TW
dc.subject經驗正交函數zh_TW
dc.subjectKarhunen-Loeve展開法zh_TW
dc.subjectHF radaren
dc.subjectdata fillingen
dc.subjectKarhunen-Loeve expansionen
dc.subjectEOFen
dc.subjectCODARen
dc.title高頻雷達觀測流場補缺值問題之探討─以台灣東北部海域為例zh_TW
dc.titleA Study on Data Filling from Incomplete Dataset of HF Radar Measured Ocean Currents─A Case Study of the Flow Field Northeast of Taiwanen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor詹森
dc.contributor.oralexamcommittee陳慶生,楊穎堅
dc.subject.keyword高頻雷達,CODAR,經驗正交函數,Karhunen-Loeve展開法,填補缺值,zh_TW
dc.subject.keywordHF radar,CODAR,EOF,Karhunen-Loeve expansion,data filling,en
dc.relation.page92
dc.rights.note同意授權(全球公開)
dc.date.accepted2013-08-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf3.15 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved