Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58689
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉力瑜(Li-Yu Liu)
dc.contributor.authorShu-Min Kaoen
dc.contributor.author高樹民zh_TW
dc.date.accessioned2021-06-16T08:25:51Z-
dc.date.available2015-08-20
dc.date.copyright2014-01-27
dc.date.issued2014
dc.date.submitted2014-01-21
dc.identifier.citation[1] M D Adams, J M Kelley, J D Gocayne, M Dubnick, M H Polymeropoulos, H Xiao,
C R Merril, A Wu, B Olde, and R F Moreno. Complementary DNA sequencing:
expressed sequence tags and human genome project. Science (New York, N.Y.),
252(5013):1651–6, June 1991.
[2] S F Altschul,WGish,WMiller, EWMyers, and D J Lipman. Basic local alignment
search tool. Journal of molecular biology, 215(3):403–10, October 1990.
[3] J. C. Alwine. Method for Detection of Specific RNAs in Agarose Gels by Transfer
to Diazobenzyloxymethyl-Paper and Hybridization with DNA Probes. Proceedings
of the National Academy of Sciences, 74(12):5350–5354, December 1977.
[4] Michael Becker-Andr’e and Klaus Hahlbrock. Absolute mRNA quantification using
the polymerase chain reaction (PCR). A novel approach by a P CR aided t ranscipt
t itration assay (PATTY). Nucleic Acids Research, 17(22):9437–9446, November
1989.
[5] V Cahais, P Gayral, G Tsagkogeorga, J Melo-Ferreira, M Ballenghien, L Weinert,
Y Chiari, K Belkhir, V Ranwez, and N Galtier. Reference-free transcriptome
assembly in non-model animals from next-generation sequencing data. Molecular
ecology resources, 12(5):834–45, September 2012.
[6] Tean-Hsu Chang. Identification of conserved microRNAs and their targets in PnWB
phytoplasma induced leafy flower of cantharanthus roseus. PhD thesis, 2012.
[7] CLC Genomics Workbench. http://www.clcbio.com.
[8] Lior David, Wolfgang Huber, Marina Granovskaia, Joern Toedling, Curtis J Palm,
Lee Bofkin, Ted Jones, Ronald W Davis, and Lars M Steinmetz. A high-resolution
map of transcription in the yeast genome. Proceedings of the National Academy of
Sciences of the United States of America, 103(14):5320–5, April 2006.
[9] Jialei Duan, Chuan Xia, Guangyao Zhao, Jizeng Jia, and Xiuying Kong. Optimizing
de novo common wheat transcriptome assembly using short-read RNA-Seq data.
BMC genomics, 13:392, January 2012.
[10] Limin Fu, Beifang Niu, Zhengwei Zhu, Sitao Wu, and Weizhong Li. CD-HIT:
accelerated for clustering the next-generation sequencing data. Bioinformatics
(Oxford, England), 28(23):3150–2, December 2012.
[11] Xiangchao Gan, Oliver Stegle, Jonas Behr, Joshua G Steffen, Philipp Drewe,
Katie L Hildebrand, Rune Lyngsoe, Sebastian J Schultheiss, Edward J Osborne,
Vipin T Sreedharan, Andr’e Kahles, Regina Bohnert, G’eraldine Jean, Paul Derwent,
Paul Kersey, Eric J Belfield, Nicholas P Harberd, Eric Kemen, Christopher
Toomajian, Paula X Kover, Richard M Clark, Gunnar R‥atsch, and Richard Mott.
Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature,
477(7365):419–23, September 2011.
[12] Chen Geng, Y I N Kangping,Wang Charles, and S H I Tieliu. De novo transcriptome
assembly of RNA-Seq reads with different strategies. 54(12):1129–1133, 2011.
[13] Elsa G’ongora-Castillo and C Robin Buell. Bioinformatics challenges in de novo
transcriptome assembly using short read sequences in the absence of a reference
genome sequence. Natural product reports, 30(4):490–500, April 2013.
[14] Manfred G Grabherr, Brian J Haas, Moran Yassour, Joshua Z Levin, Dawn a
Thompson, Ido Amit, Xian Adiconis, Lin Fan, Raktima Raychowdhury, Qiandong
Zeng, Zehua Chen, Evan Mauceli, Nir Hacohen, Andreas Gnirke, Nicholas Rhind,
Federica di Palma, Bruce W Birren, Chad Nusbaum, Kerstin Lindblad-Toh, Nir
Friedman, and Aviv Regev. Full-length transcriptome assembly from RNA-Seq data
without a reference genome. Nature biotechnology, 29(7):644–52, July 2011.
[15] Nicole Gruenheit, Oliver Deusch, Christian Esser, Matthias Becker, Claudia
Voelckel, and Peter Lockhart. Cutoffs and k-mers: implications from a
transcriptome study in allopolyploid plants. BMC genomics, 13(1):92, January 2012.
[16] Xiaoqiu Huang and Anup Madan. CAP3 : A DNA Sequence Assembly Program.
(906):868–877, 1999.
[17] Clarke Kaitlin, Yang Yi, Marsh Ronald, X I E Linglin, and Zhang Ke K.
Comparative analysis of de novo transcriptome assembly. 56(2):156–162, 2013.
[18] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2.
Nature methods, 9(4):357–9, April 2012.
[19] Heng Li. https://github.com/nh13/DWGSIM.
[20] Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics (Oxford, England),
22(13):1658–9, July 2006.
[21] Ruibang Luo, Binghang Liu, Yinlong Xie, Zhenyu Li, Weihua Huang, Jianying
Yuan, Guangzhu He, Yanxiang Chen, Qi Pan, Yunjie Liu, Jingbo Tang, Gengxiong
Wu, Hao Zhang, Yujian Shi, Yong Liu, Chang Yu, Bo Wang, Yao Lu, Changlei
Han, David W Cheung, Siu-Ming Yiu, Shaoliang Peng, Zhu Xiaoqian, Guangming
Liu, Xiangke Liao, Yingrui Li, Huanming Yang, Jian Wang, Tak-Wah Lam, and
JunWang. SOAPdenovo2: an empirically improved memory-efficient short-read de
novo assembler. GigaScience, 1(1):18, January 2012.
[22] Allyson M MacLean, Akiko Sugio, Olga V Makarova, Kim C Findlay, Victoria M
Grieve, R’eka T’oth, Mogens Nicolaisen, and Saskia A Hogenhout. Phytoplasma
effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis
plants. Plant physiology, 157(2):831–41, October 2011.
[23] Elaine R Mardis. Next-generation DNA sequencing methods. Annual review of
genomics and human genetics, 9:387–402, January 2008.
[24] Jeffrey A Martin and ZhongWang. Next-generation transcriptome assembly. Nature
Publishing Group, 12(10):671–682, 2011.
[25] Laetitia B B Martin, Zhangjun Fei, James J Giovannoni, and Jocelyn K C Rose.
Catalyzing plant science research with RNA-seq. Frontiers in plant science, 4:66,
January 2013.
[26] Paul A McGettigan. Transcriptomics in the RNA-seq era. Current opinion in
chemical biology, 17(1):4–11, February 2013.
[27] Olena Morozova, Martin Hirst, and Marco a Marra. Applications of new sequencing
technologies for transcriptome analysis. Annual review of genomics and human
genetics, 10:135–51, January 2009.
[28] Kai-Oliver Mutz, Alexandra Heilkenbrinker, Maren L‥onne, Johanna-Gabriela
Walter, and Frank Stahl. Transcriptome analysis using next-generation sequencing.
Current opinion in biotechnology, 24(1):22–30, February 2013.
[29] Ugrappa Nagalakshmi, Zhong Wang, Karl Waern, Chong Shou, Debasish Raha,
Mark Gerstein, and Michael Snyder. The transcriptional landscape of the yeast
genome defined by RNA sequencing. Science (New York, N.Y.), 320(5881):1344–9,
June 2008.
[30] K. E. Noonan, C. Beck, T. A. Holzmayer, J. E. Chin, J. S. Wunder, I. L. Andrulis,
A. F. Gazdar, C. L. Willman, B. Griffith, and D. D. Von Hoff. Quantitative
analysis of MDR1 (multidrug resistance) gene expression in human tumors by
polymerase chain reaction. Proceedings of the National Academy of Sciences,
87(18):7160–7164, September 1990.
[31] Alicia Oshlack, Mark D Robinson, and Matthew D Young. From RNA-seq reads to
differential expression results. Genome biology, 11(12):220, January 2010.
[32] Fatih Ozsolak and Patrice M Milos. RNA sequencing: advances, challenges and
opportunities. Nature reviews. Genetics, 12(2):87–98, February 2011.
[33] P A Pevzner, H Tang, and M S Waterman. An Eulerian path approach to DNA
fragment assembly. Proceedings of the National Academy of Sciences of the United
States of America, 98(17):9748–53, August 2001.
[34] Andrea Rau, M’elina Gallopin, Gilles Celeux, and Florence Jaffr’ezic. Data-based
filtering for replicated high-throughput transcriptome sequencing experiments.
Bioinformatics (Oxford, England), 29(17):2146–2152, July 2013.
[35] P Rice, I Longden, and A Bleasby. EMBOSS: the European Molecular Biology
Open Software Suite. Trends in genetics : TIG, 16(6):276–7, June 2000.
[36] Adam Roberts and Lior Pachter. Streaming fragment assignment for real-time
analysis of sequencing experiments. Nature methods, 10(1):71–3, January 2013.
[37] Michael C Schatz, Arthur L Delcher, and Steven L Salzberg. Assembly of large
genomes using second-generation sequencing. Genome research, 20(9):1165–73,
September 2010.
[38] M. Schena, D. Shalon, R. W. Davis, and P. O. Brown. Quantitative Monitoring
of Gene Expression Patterns with a Complementary DNA Microarray. Science,
270(5235):467–470, October 1995.
[39] Simon Schliesky, Udo Gowik, P Andreas, M Weber, and Andrea Br‥autigam.
RNA-seq assembly – are we there yet ? 3(September):1–12, 2012.
[40] Marcel H Schulz, Daniel R Zerbino, Martin Vingron, and Ewan Birney. Oases:
robust de novo RNA-seq assembly across the dynamic range of expression levels.
Bioinformatics (Oxford, England), 28(8):1086–92, April 2012.
[41] Susan R Strickler, Aureliano Bombarely, and Lukas A Mueller. Designing a
transcriptome next-generation sequencing project for a nonmodel plant species.
American journal of botany, 99(2):257–66, February 2012.
[42] Yann Surget-Groba and Juan I Montoya-Burgos. Optimization of de novo
transcriptome assembly from next-generation sequencing data. Genome research,
20(10):1432–40, October 2010.
[43] Cole Trapnell, Lior Pachter, and Steven L Salzberg. TopHat: discovering splice
junctions with RNA-Seq. Bioinformatics (Oxford, England), 25(9):1105–11, May
2009.
[44] Hsin-I Tseng. High-throughput transcriptome and small RNA analysis for studying
phytoplasma infection on catharanthus roseus using next generation sequencing.
PhD thesis, 2011.
[45] V. E. Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler. Serial Analysis of
Gene Expression. Science, 270(5235):484–487, October 1995.
[46] V E Velculescu, L Zhang, WZhou, J Vogelstein, M A Basrai, D E Bassett, P Hieter,
B Vogelstein, and K W Kinzler. Characterization of the yeast transcriptome. Cell,
88(2):243–51, January 1997.
[47] Nagarjun Vijay, Jelmer W Poelstra, Axel K‥unstner, and Jochen B W Wolf.
Challenges and strategies in transcriptome assembly and differential gene expression
quantification. A comprehensive in silico assessment of RNA-seq experiments.
Molecular ecology, 22(3):620–34, February 2013.
[48] Zhong Wang, Mark Gerstein, and Michael Snyder. RNA-Seq: a revolutionary tool
for transcriptomics. Nature Reviews Genetics, 10(1):57–63, 2009.
[49] Alexander J Westermann, Stanislaw A Gorski, and J‥org Vogel. Dual RNA-seq of
pathogen and host. Nature reviews. Microbiology, 10(9):618–30, September 2012.
[50] Jochen B W Wolf. Principles of transcriptome analysis and gene expression
quantification: an RNA-seq tutorial. Molecular ecology resources, 13(4):559–72,
April 2013.
[51] Yinlong Xie, Gengxiong Wu, Jingbo Tang, Ruibang Luo, Jordan Patterson, Weihua
Huang, Guangzhu He, Shengchang Gu, Shengkang Li, Xin Zhou, Yingrui Li,
Xun Xu, Gane Ka-shu Wong, and Jun Wang. SOAPdenovo-Trans : De novo
transcriptome assembly with short RNA-Seq reads. pages 1–7, 2013.
[52] Daniel R Zerbino, Ewan Birney, Juliane C Dohm, Claudio Lottaz, Tatiana Borodina,
Jonathan Butler, Iain Maccallum, Michael Kleber, Jared T Simpson, and Richard
Durbin. Velvet : Algorithms for de novo short read assembly using de Bruijn graphs
structures. pages 821–829, 2008.
[53] Daniel Robert Zerbino. Genome assembly and comparison using de Bruijn graphs.
2009.
[54] Qiong-yi Zhao, Yi Wang, Yi-meng Kong, Da Luo, Xuan Li, and Pei Hao.
Optimizing de novo transcriptome assembly from short-read RNA-Seq data : a
comparative study. BMC Bioinformatics, 12(Suppl 14):S2, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58689-
dc.description.abstract近年來由於定序技術的日新月異,利用次世代定序技術 (next-generation sequencing, NGS) 解序及分析模式、非模式生物組織中所有核醣核酸的序列已發展成強大的工具,研究全轉錄體對單一實驗室而言不再遙不可及。為了偵測不同生物樣本的基因表現量,一個典型的次世代轉錄體分析流程包括了將讀取得到的序列比對回參考序列,接著計算每單位所比對到的讀取序列片段數,並將整理後的片段數進行校正以及統計檢定,最後將檢定結果與生物假說整合並以實驗佐證。如前述步驟所言,對於存在參考序列的生物樣本,吾人可以利用生物資訊演算法將讀取到的片段比對回參考序列;但是對於非模式生物而言,吾人則必須先利用生物資訊演算法,將讀取片段僅利用片段與片段間的關係連接,組裝成有可能的轉錄本後再進行校正以及後續統計分析。然而對於選擇組裝次世代定序所產生的短讀取序列片段之方法仍無定論,組裝方法的準確性與效率也仍未有太多探討。故此篇文章藉由模擬以次世代定序技術定序阿拉伯芥所產生的短讀取片段,研究並探討各組裝方法之性能及特性。根據組裝結果質性的比較,以混和讀取片段進行組裝的策略表現得比混和初步組裝長序列的策略,產生較多較長以及正確的組裝結果,但同時也產生較多類型的組裝錯誤。綜合此篇研究中的評估,從組裝的錯誤率來看,Oases 表現得較好;CLC具有組裝出最多樣正確結果的能力。本研究的結果並不能論定最佳的組裝方法,有效的結合各組裝方法的特性和結果在未來是值得研究的目標。最後,我們將最適化後的結果套用至組裝日日春全轉錄體上,期望在後續統計及生物實驗分析上取得較高的可靠性。zh_TW
dc.description.abstractWith recent advances in sequencing technologies, whole transcriptome sequencing using next-generation sequencing (NGS) methods has emerged as a powerful approach to unraveling the complexity of both model and non-model species, making genome-wide transcription studies even accessible to individual laboratories.
A typical RNA-Seq analysis pipeline for detecting differential expression begins with mapping reads to reference, followed by calculating read summarization, normalization, statistical testing, and integrative analysis.
While mapping reads to reference rely on reference genome or transcriptome for model organism, non-model species without complete or with partial reference must perform de novo transcriptome assembly, as a crucial step in detecting differential expression or generating transcriptomic resource.
However, the accuracy and efficiency of de novo assembled transcripts from ultra-short reads via current assembly methods remain unclear.
Here, we assess the performance and investigate the properties of selected assemblers by simulated RNA-seq reads generated from Arabidopsis.
According to the qualitative evaluations, pooled-reads strategy assembled more and longer correct contigs at a cost of mis-assembly than pooled-contigs strategy.
The evaluations of assemblers revealed that Oases outperformed others by assembling less noise.
CLC assembled the most amount of uniquely correct contigs in most of the simulations.
The results suggest that there is no best assembler so far, but different properties of assemblers could be utilized together when reconstructing transcriptome sequence without reference genome.
Finally the optimized results were applied to construct the transcriptome sequence of Catharanthus roseus plants for more reliability in downstream analyses.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T08:25:51Z (GMT). No. of bitstreams: 1
ntu-103-R00621207-1.pdf: 3147133 bytes, checksum: bfd064bbad077855eace4467f034d037 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Materials and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Analyses workflow in this study . . . . . . . . . . . . . . . . . . . . . . 7
2.2 RNA-Seq simulations and real data . . . . . . . . . . . . . . . . . . . . . 7
2.3 Selected assemblers and assembling protocols . . . . . . . . . . . . . . . 9
2.4 Procedure of evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Comparisons of correlations of log2 fold-change of FPKM between simulations
and de novo assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Reconciliation of assemblies from different assemblers . . . . . . . . . . 12
3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1 Assembling results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Evaluations of strategies for assembling . . . . . . . . . . . . . . . . . . 14
3.3 Evaluations of algorithms for assembling using pooled-reads strategy . . 15
3.4 Assembly metrics of completely and partially assembled contigs . . . . . 17
3.5 Comparison of uniquely complete contigs across simulations . . . . . . . 18
3.6 Evaluations in terms of gene expression . . . . . . . . . . . . . . . . . . 18
3.7 Construction of transcriptome of Catharanthus roseus . . . . . . . . . . . 19
4 Discussions and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Supplementary tables and figures . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
dc.language.isoen
dc.subject無參考序列轉錄體組裝zh_TW
dc.subject次世代定序技術zh_TW
dc.subject次世代轉錄體定序zh_TW
dc.subjectRNA-Seqen
dc.subjectde novo transcriptome assemblyen
dc.subjectNGSen
dc.title評估非模式物種次世代轉錄體組裝之方法zh_TW
dc.titleEvaluations of De novo Transcriptome Assembly Methods on Next-Generation Sequencing Dataen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.coadvisor林詩舜(Shih-Shun Lin)
dc.contributor.oralexamcommittee蔡政安(Cheng-An Tsai)
dc.subject.keyword次世代定序技術,次世代轉錄體定序,無參考序列轉錄體組裝,zh_TW
dc.subject.keywordNGS,RNA-Seq,de novo transcriptome assembly,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2014-01-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved