請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58682
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林淑萍 | |
dc.contributor.author | Wei-Chien Tang | en |
dc.contributor.author | 唐偉倩 | zh_TW |
dc.date.accessioned | 2021-06-16T08:25:30Z | - |
dc.date.available | 2019-02-25 | |
dc.date.copyright | 2014-02-25 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-01-22 | |
dc.identifier.citation | 1. Albanis E, Friedman S L. Hepatic fibrosis. Pathogenesis and principles of therapy. Clin Liver Dis 2001; 5: 315-34, v-vi.
2. Bedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 1996; 24: 289-93. 3. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, Denk H, Desmet V, Korb G, Macsween R N, Et Al. Histological grading and staging of chronic hepatitis. J Hepatol 1995; 22: 696-9. 4. Aube C, Winkfield B, Oberti F, Vuillemin E, Rousselet M C, Caron C, Cales P. New Doppler ultrasound signs improve the non-invasive diagnosis of cirrhosis or severe liver fibrosis. Eur J Gastroenterol Hepatol 2004; 16: 743-51. 5. Aube C, Racineux P X, Lebigot J, Oberti F, Croquet V, Argaud C, Cales P, Caron C. [Diagnosis and quantification of hepatic fibrosis with diffusion weighted MR imaging: preliminary results]. J Radiol 2004; 85: 301-6. 6. Fraquelli M, Rigamonti C, Casazza G, Conte D, Donato M F, Ronchi G, Colombo M. Reproducibility of transient elastography in the evaluation of liver fibrosis in patients with chronic liver disease. Gut 2007; 56: 968-73. 7. Imbert-Bismut F, Messous D, Thibault V, Myers R B, Piton A, Thabut D, Devers L, Hainque B, Mercadier A, Poynard T. Intra-laboratory analytical variability of biochemical markers of fibrosis (Fibrotest) and activity (Actitest) and reference ranges in healthy blood donors. Clin Chem Lab Med 2004; 42: 323-33. 8. Sasse D, Spornitz U M, Maly I P. Liver architecture. Enzyme 1992; 46: 8-32. 9. Gomez-Lechon M J, Donato M T, Castell J V, Jover R. Human hepatocytes as a tool for studying toxicity and drug metabolism. Curr Drug Metab 2003; 4: 292-312. 10. Benyon R C, Arthur M J. Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 2001; 21: 373-84. 11. Zeisberg M, Yang C, Martino M, Duncan M B, Rieder F, Tanjore H, Kalluri R. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 2007; 282: 23337-47. 12. Beaussier M, Wendum D, Schiffer E, Dumont S, Rey C, Lienhart A, Housset C. Prominent contribution of portal mesenchymal cells to liver fibrosis in ischemic and obstructive cholestatic injuries. Lab Invest 2007; 87: 292-303. 13. Forbes S J, Russo F P, Rey V, Burra P, Rugge M, Wright N A, Alison M R. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology 2004; 126: 955-63. 14. Friedman S L. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008; 134: 1655-69. 15. Pinzani M. PDGF and signal transduction in hepatic stellate cells. Front Biosci 2002; 7: d1720-6. 16. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin Liver Dis 2001; 21: 397-416. 17. Marra F, Romanelli R G, Giannini C, Failli P, Pastacaldi S, Arrighi M C, Pinzani M, Laffi G, Montalto P, Gentilini P. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 1999; 29: 140-8. 18. Rombouts K, Knittel T, Machesky L, Braet F, Wielant A, Hellemans K, De Bleser P, Gelman I, Ramadori G, Geerts A. Actin filament formation, reorganization and migration are impaired in hepatic stellate cells under influence of trichostatin A, a histone deacetylase inhibitor. J Hepatol 2002; 37: 788-96. 19. Marra F, Pinzani M. Role of hepatic stellate cells in the pathogenesis of portal hypertension. Nefrologia 2002; 22 Suppl 5: 34-40. 20. Rockey D C, Chung J J. Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility. J Clin Invest 1995; 95: 1199-206. 21. Friedman S L. Transcriptional regulation of stellate cell activation. J Gastroenterol Hepatol 2006; 21 Suppl 3: S79-83. 22. Eng F J, Friedman S L. Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes complex. Am J Physiol Gastrointest Liver Physiol 2000; 279: G7-G11. 23. Bataller R, Brenner D A. Liver fibrosis. J Clin Invest 2005; 115: 209-18. 24. Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113: 685-700. 25. Leask A, Abraham D J. TGF-beta signaling and the fibrotic response. FASEB J 2004; 18: 816-27. 26. Derynck R, Zhang Y E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425: 577-84. 27. Rachfal a W, Brigstock D R. Connective tissue growth factor (CTGF/CCN2) in hepatic fibrosis. Hepatol Res 2003; 26: 1-9. 28. Canbay A, Higuchi H, Bronk S F, Taniai M, Sebo T J, Gores G J. Fas enhances fibrogenesis in the bile duct ligated mouse: a link between apoptosis and fibrosis. Gastroenterology 2002; 123: 1323-30. 29. Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores G J. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 2003; 83: 655-63. 30. Han Y P. Matrix metalloproteinases, the pros and cons, in liver fibrosis. J Gastroenterol Hepatol 2006; 21 Suppl 3: S88-91. 31. Arthur M J. Fibrogenesis II. Metalloproteinases and their inhibitors in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2000; 279: G245-9. 32. Borojevic R, Monteiro a N, Vinhas S A, Domont G B, Mourao P A, Emonard H, Grimaldi G, Jr., Grimaud J A. Establishment of a continuous cell line from fibrotic schistosomal granulomas in mice livers. In Vitro Cell Dev Biol 1985; 21: 382-90. 33. Sauvant P, Sapin V, Abergel A, Schmidt C K, Blanchon L, Alexandre-Gouabau M C, Rosenbaum J, Bommelaer G, Rock E, Dastugue B, Nau H, Azais-Braesco V. PAV-1, a new rat hepatic stellate cell line converts retinol into retinoic acid, a process altered by ethanol. Int J Biochem Cell Biol 2002; 34: 1017-29. 34. Vogel S, Piantedosi R, Frank J, Lalazar A, Rockey D C, Friedman S L, Blaner W S. An immortalized rat liver stellate cell line (HSC-T6): a new cell model for the study of retinoid metabolism in vitro. J Lipid Res 2000; 41: 882-93. 35. Murakami K, Abe T, Miyazawa M, Yamaguchi M, Masuda T, Matsuura T, Nagamori S, Takeuchi K, Abe K, Kyogoku M. Establishment of a new human cell line, LI90, exhibiting characteristics of hepatic Ito (fat-storing) cells. Lab Invest 1995; 72: 731-9. 36. Xu L, Hui a Y, Albanis E, Arthur M J, O'byrne S M, Blaner W S, Mukherjee P, Friedman S L, Eng F J. Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 2005; 54: 142-51. 37. Muller A, Machnik F, Zimmermann T, Schubert H. Thioacetamide-induced cirrhosis-like liver lesions in rats--usefulness and reliability of this animal model. Exp Pathol 1988; 34: 229-36. 38. Porter W R, Gudzinowicz M J, Neal R A. Thioacetamide-induced hepatic necrosis. II. Pharmacokinetics of thioacetamide and thioacetamide-S-oxide in the rat. J Pharmacol Exp Ther 1979; 208: 386-91. 39. Bruck R, Aeed H, Shirin H, Matas Z, Zaidel L, Avni Y, Halpern Z. The hydroxyl radical scavengers dimethylsulfoxide and dimethylthiourea protect rats against thioacetamide-induced fulminant hepatic failure. J Hepatol 1999; 31: 27-38. 40. Moreira E, Fontana L, Periago J L, Sanchez De Medina F, Gil A. Changes in fatty acid composition of plasma, liver microsomes, and erythrocytes in liver cirrhosis induced by oral intake of thioacetamide in rats. Hepatology 1995; 21: 199-206. 41. Honda H, Ikejima K, Hirose M, Yoshikawa M, Lang T, Enomoto N, Kitamura T, Takei Y, Sato N. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver. Hepatology 2002; 36: 12-21. 42. Kornek M, Raskopf E, Guetgemann I, Ocker M, Gerceker S, Gonzalez-Carmona M A, Rabe C, Sauerbruch T, Schmitz V. Combination of systemic thioacetamide (TAA) injections and ethanol feeding accelerates hepatic fibrosis in C3H/He mice and is associated with intrahepatic up regulation of MMP-2, VEGF and ICAM-1. J Hepatol 2006; 45: 370-6. 43. Salguero Palacios R, Roderfeld M, Hemmann S, Rath T, Atanasova S, Tschuschner A, Gressner O A, Weiskirchen R, Graf J, Roeb E. Activation of hepatic stellate cells is associated with cytokine expression in thioacetamide-induced hepatic fibrosis in mice. Lab Invest 2008; 88: 1192-203. 44. Molinoff P B, Axelrod J. Biochemistry of catecholamines. Annu Rev Biochem 1971; 40: 465-500. 45. Oben J A, Roskams T, Yang S, Lin H, Sinelli N, Torbenson M, Smedh U, Moran T H, Li Z, Huang J, Thomas S A, Diehl a M. Hepatic fibrogenesis requires sympathetic neurotransmitters. Gut 2004; 53: 438-45. 46. Athari A, Hanecke K, Jungermann K. Prostaglandin F2 alpha and D2 release from primary Ito cell cultures after stimulation with noradrenaline and ATP but not adenosine. Hepatology 1994; 20: 142-8. 47. Oben J A, Roskams T, Yang S, Lin H, Sinelli N, Li Z, Torbenson M, Thomas S A, Diehl a M. Norepinephrine induces hepatic fibrogenesis in leptin deficient ob/ob mice. Biochem Biophys Res Commun 2003; 308: 284-92. 48. Lai K B, Sanderson J E, Yu C M. Suppression of collagen production in norepinephrine stimulated cardiac fibroblasts culture: differential effect of alpha and beta-adrenoreceptor antagonism. Cardiovasc Drugs Ther 2009; 23: 271-80. 49. Oben J A, Diehl a M. Sympathetic nervous system regulation of liver repair. Anat Rec A Discov Mol Cell Evol Biol 2004; 280: 874-83. 50. Tang W C. Discovery of biomarkers for hepatitis C virus related liver fibrosis [Master's thesis, National Taiwan University, Taipei, Taiwan]; 2007. 51. Fallowfield J A, Mizuno M, Kendall T J, Constandinou C M, Benyon R C, Duffield J S, Iredale J P. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol 2007; 178: 5288-95. 52. Fischer R, Cariers A, Reinehr R, Haussinger D. Caspase 9-dependent killing of hepatic stellate cells by activated Kupffer cells. Gastroenterology 2002; 123: 845-61. 53. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23-35. 54. Barrios-Rodiles M, Tiraloche G, Chadee K. Lipopolysaccharide modulates cyclooxygenase-2 transcriptionally and posttranscriptionally in human macrophages independently from endogenous IL-1 beta and TNF-alpha. J Immunol 1999; 163: 963-9. 55. Nathan C, Xie Q W. Regulation of biosynthesis of nitric oxide. J Biol Chem 1994; 269: 13725-8. 56. Li J T, Liao Z X, Ping J, Xu D, Wang H. Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J Gastroenterol 2008; 43: 419-28. 57. Nelson D R, Lauwers G Y, Lau J Y, Davis G L. Interleukin 10 treatment reduces fibrosis in patients with chronic hepatitis C: a pilot trial of interferon nonresponders. Gastroenterology 2000; 118: 655-60. 58. Naziroglu M, Cay M, Ustundag B, Aksakal M, Yekeler H. Protective effects of vitamin E on carbon tetrachloride-induced liver damage in rats. Cell Biochem Funct 1999; 17: 253-9. 59. Mato J M, Camara J, Fernandez De Paz J, Caballeria L, Coll S, Caballero A, Garcia-Buey L, Beltran J, Benita V, Caballeria J, Sola R, Moreno-Otero R, Barrao F, Martin-Duce A, Correa J A, Pares A, Barrao E, Garcia-Magaz I, Puerta J L, Moreno J, Boissard G, Ortiz P, Rodes J. S-adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trial. J Hepatol 1999; 30: 1081-9. 60. Yoshiji H, Noguchi R, Kuriyama S, Ikenaka Y, Yoshii J, Yanase K, Namisaki T, Kitade M, Masaki T, Fukui H. Imatinib mesylate (STI-571) attenuates liver fibrosis development in rats. Am J Physiol Gastrointest Liver Physiol 2005; 288: G907-13. 61. Inagaki Y, Kushida M, Higashi K, Itoh J, Higashiyama R, Hong Y Y, Kawada N, Namikawa K, Kiyama H, Bou-Gharios G, Watanabe T, Okazaki I, Ikeda K. Cell type-specific intervention of transforming growth factor beta/Smad signaling suppresses collagen gene expression and hepatic fibrosis in mice. Gastroenterology 2005; 129: 259-68. 62. Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said H M, Lorenzen J, Ten Dijke P, Gressner a M. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology 2003; 125: 178-91. 63. Bueno M, Salgado S, Beas-Zarate C, Armendariz-Borunda J. Urokinase-type plasminogen activator gene therapy in liver cirrhosis is mediated by collagens gene expression down-regulation and up-regulation of MMPs, HGF and VEGF. J Gene Med 2006; 8: 1291-9. 64. Iimuro Y, Nishio T, Morimoto T, Nitta T, Stefanovic B, Choi S K, Brenner D A, Yamaoka Y. Delivery of matrix metalloproteinase-1 attenuates established liver fibrosis in the rat. Gastroenterology 2003; 124: 445-58. 65. Saile B, Knittel T, Matthes N, Schott P, Ramadori G. CD95/CD95L-mediated apoptosis of the hepatic stellate cell. A mechanism terminating uncontrolled hepatic stellate cell proliferation during hepatic tissue repair. Am J Pathol 1997; 151: 1265-72. 66. Anselmi K, Stolz D B, Nalesnik M, Watkins S C, Kamath R, Gandhi C R. Gliotoxin causes apoptosis and necrosis of rat Kupffer cells in vitro and in vivo in the absence of oxidative stress: exacerbation by caspase and serine protease inhibition. J Hepatol 2007; 47: 103-13. 67. Fallowfield J A, Kendall T J, Iredale J P. Reversal of fibrosis: no longer a pipe dream? Clin Liver Dis 2006; 10: 481-97, viii. 68. Hail N, Jr., Cortes M, Drake E N, Spallholz J E. Cancer chemoprevention: a radical perspective. Free Radic Biol Med 2008; 45: 97-110. 69. Souza I C, Martins L A, Coelho B P, Grivicich I, Guaragna R M, Gottfried C, Borojevic R, Guma F C. Resveratrol inhibits cell growth by inducing cell cycle arrest in activated hepatic stellate cells. Mol Cell Biochem 2008; 315: 1-7. 70. Rivera H, Shibayama M, Tsutsumi V, Perez-Alvarez V, Muriel P. Resveratrol and trimethylated resveratrol protect from acute liver damage induced by CCl4 in the rat. J Appl Toxicol 2008; 28: 147-55. 71. Hong S W, Jung K H, Zheng H M, Lee H S, Suh J K, Park I S, Lee D H, Hong S S. The protective effect of resveratrol on dimethylnitrosamine-induced liver fibrosis in rats. Arch Pharm Res 2010; 33: 601-9. 72. Li Y Q, Wang S F. Anti-hepatitis B activities of ganoderic acid from Ganoderma lucidum. Biotechnol Lett 2006; 28: 837-41. 73. Shieh Y H, Liu C F, Huang Y K, Yang J Y, Wu I L, Lin C H, Li S C. Evaluation of the hepatic and renal-protective effects of Ganoderma lucidum in mice. Am J Chin Med 2001; 29: 501-7. 74. Chen H S, Tsai Y F, Lin S, Lin C C, Khoo K H, Lin C H, Wong C H. Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides. Bioorg Med Chem 2004; 12: 5595-601. 75. Wong K L, Chao H H, Chan P, Chang L P, Liu C F. Antioxidant activity of Ganoderma lucidum in acute ethanol-induced heart toxicity. Phytother Res 2004; 18: 1024-6. 76. Lin W C, Lin W L. Ameliorative effect of Ganoderma lucidum on carbon tetrachloride-induced liver fibrosis in rats. World J Gastroenterol 2006; 12: 265-70. 77. Wu Y W, Fang H L, Lin W C. Post-treatment of Ganoderma lucidum reduced liver fibrosis induced by thioacetamide in mice. Phytother Res 2010; 24: 494-9. 78. Wang G J, Huang Y J, Chen D H, Lin Y L. Ganoderma lucidum extract attenuates the proliferation of hepatic stellate cells by blocking the PDGF receptor. Phytother Res 2009; 23: 833-9. 79. Ofodile L N, Uma N U, Kokubun T, Grayer R J, Ogundipe O T, Simmonds M S. Antimicrobial activity of some Ganoderma species from Nigeria. Phytother Res 2005; 19: 310-3. 80. Weng C J, Fang P S, Chen D H, Chen K D, Yen G C. Anti-invasive effect of a rare mushroom, Ganoderma colossum , on human hepatoma cells. J Agric Food Chem 2010; 58: 7657-63. 81. Kleinwachter P, Anh N, Kiet T T, Schlegel B, Dahse H M, Hartl A, Grafe U. Colossolactones, new triterpenoid metabolites from a Vietnamese mushroom Ganoderma colossum. J Nat Prod 2001; 64: 236-9. 82. El Dine R S, El Halawany a M, Nakamura N, Ma C M, Hattori M. New lanostane triterpene lactones from the Vietnamese mushroom Ganoderma colossum (FR.) C. F. BAKER. Chem Pharm Bull (Tokyo) 2008; 56: 642-6. 83. El Dine R S, El Halawany a M, Ma C M, Hattori M. Anti-HIV-1 protease activity of lanostane triterpenes from the vietnamese mushroom Ganoderma colossum. J Nat Prod 2008; 71: 1022-6. 84. El Dine R S, El Halawany a M, Ma C M, Hattori M. Inhibition of the dimerization and active site of HIV-1 protease by secondary metabolites from the Vietnamese mushroom Ganoderma colossum. J Nat Prod 2009; 72: 2019-23. 85. Wu G, Fang Y Z, Yang S, Lupton J R, Turner N D. Glutathione metabolism and its implications for health. J Nutr 2004; 134: 489-92. 86. Griffith O W. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. J Biol Chem 1982; 257: 13704-12. 87. Huang C P, Fang W H, Lin L I, Chiou R Y, Kan L S, Chi N H, Chen Y R, Lin T Y, Lin S B. Anticancer activity of botanical alkyl hydroquinones attributed to topoisomerase II poisoning. Toxicol Appl Pharmacol 2008; 227: 331-8. 88. Stankova P, Kucera O, Lotkova H, Rousar T, Endlicher R, Cervinkova Z. The toxic effect of thioacetamide on rat liver in vitro. Toxicol In Vitro 2010; 24: 2097-103. 89. Oben J A, Yang S, Lin H, Ono M, Diehl a M. Norepinephrine and neuropeptide Y promote proliferation and collagen gene expression of hepatic myofibroblastic stellate cells. Biochem Biophys Res Commun 2003; 302: 685-90. 90. Albano E, Clot P, Morimoto M, Tomasi A, Ingelman-Sundberg M, French S W. Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Hepatology 1996; 23: 155-63. 91. Bondy S C. Ethanol toxicity and oxidative stress. Toxicol Lett 1992; 63: 231-41. 92. Higueras V, Raya A, Rodrigo J M, Serra M A, Roma J, Romero F J. Interferon decreases serum lipid peroxidation products of hepatitis C patients. Free Radic Biol Med 1994; 16: 131-3. 93. Kisseleva T, Brenner D A. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol 2007; 22 Suppl 1: S73-8. 94. Thibault C, Lai C, Wilke N, Duong B, Olive M F, Rahman S, Dong H, Hodge C W, Lockhart D J, Miles M F. Expression profiling of neural cells reveals specific patterns of ethanol-responsive gene expression. Mol Pharmacol 2000; 58: 1593-600. 95. Hassan S, Duong B, Kim K S, Miles M F. Pharmacogenomic analysis of mechanisms mediating ethanol regulation of dopamine beta-hydroxylase. J Biol Chem 2003; 278: 38860-9. 96. Seo H, Yang C, Kim H S, Kim K S. Multiple protein factors interact with the cis-regulatory elements of the proximal promoter in a cell-specific manner and regulate transcription of the dopamine beta-hydroxylase gene. J Neurosci 1996; 16: 4102-12. 97. Shen H M, Liu Z G. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 2006; 40: 928-39. 98. Jaeschke H, Gores G J, Cederbaum a I, Hinson J A, Pessayre D, Lemasters J J. Mechanisms of hepatotoxicity. Toxicol Sci 2002; 65: 166-76. 99. Sancho-Bru P, Bataller R, Colmenero J, Gasull X, Moreno M, Arroyo V, Brenner D A, Gines P. Norepinephrine induces calcium spikes and proinflammatory actions in human hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2006; 291: G877-84. 100. Sigala B, Mckee C, Soeda J, Pazienza V, Morgan M, Lin C I, Selden C, Vander Borght S, Mazzoccoli G, Roskams T, Vinciguerra M, Oben J A. Sympathetic nervous system catecholamines and neuropeptide Y neurotransmitters are upregulated in human NAFLD and modulate the fibrogenic function of hepatic stellate cells. PLoS One 2013; 8: e72928. 101. Wilkening S, Stahl F, Bader A. Comparison of primary human hepatocytes and hepatoma cell line Hepg2 with regard to their biotransformation properties. Drug Metab Dispos 2003; 31: 1035-42. 102. Rabinowitz R, Korczyn a D, Eshel Y, Rubinstein I. Dopamine-beta-hydroxylase activity in serum of patients with hepatic damage. Prog Neuropsychopharmacol 1979; 3: 551-3. 103. Stewart L C, Klinman J P. Dopamine beta-hydroxylase of adrenal chromaffin granules: structure and function. Annu Rev Biochem 1988; 57: 551-92. 104. Benyon R C, Arthur M J. Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 2001; 21: 373-84. 105. Bonner J C. Regulation of PDGF and its receptors in fibrotic diseases. Cytokine Growth Factor Rev 2004; 15: 255-73. 106. Liu J S, Huang M F. Schisanlactone A, a new type of triterpenoid from a Schisandra sp. Tetrahedron Lett 1983; 24: 2351-54. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58682 | - |
dc.description.abstract | 肝星狀細胞 (hepatic stellate cell, HSC)活化後引發纖維增生,以因應外在傷害,是一種創傷癒合的正常反應;若纖維過度累積則會導致肝纖維化的發生。已知正腎上腺素 (norepinephrine, NE)為一可促進HSC活化的分子,其為多巴胺β羥化酶 (dopamine beta-hydroxylase, DBH)酵素反應後的產物。本篇研究目的在硫代乙醯胺 (thioacetamide, TAA)誘發的肝纖維化模式中,觀察NE如何誘發纖維增生。Balb/c小鼠經腹腔注射TAA後,其肝臟組織發生纖維化現象,DBH與纖維化相關的基因表現量明顯上升,由免疫組織染色發現DBH蛋白質在肝實質細胞中也明顯增加。在體外,以肝細胞株HepG2與肝星狀細胞株LX-2作為細胞模式,研究由肝細胞分泌出的NE是否能夠誘發HSC活化。實驗結果發現HepG2細胞會表現DBH與分泌NE,且HepG2條件培養基 (conditioned medium of HepG2 cells, HCM)能夠誘發LX-2細胞內的collagen增生;而TAA能夠促進DBH表現量上升,也使得細胞培養液中的NE分泌增加;以TAA處理過的HepG2條件培養基 (T-HCM)培養LX-2細胞,與HCM處理過的細胞相比,發現collagen增生情形更為明顯,藉由以DBH的siRNA降低HepG2細胞中DBH或是在細胞培養液中添加NE拮抗劑能夠抑制collagen增生現象。此外,也發現TAA在HepG2細胞中引發的DBH表現與引發細胞內的氧化壓力有關。由以上體外實驗結果推論,當肝細胞受到TAA刺激後,細胞中的氧化壓力增加而誘發DBH表現,並製造出NE而活化HSC,使得HSC細胞中的collagen累積,進而導致肝纖維化發生,未來阻斷肝細胞中DBH/NE的訊息傳遞可做為肝纖維化的治療策略之一。
本研究建立了一個TGF-β1誘發HSC活化的LX-2細胞模式,以找出具有潛力的抗肝纖維化天然物。首先以兩個已被報導具有抗肝纖維化作用的天然物-白藜蘆醇 (Resveratrol)與赤芝粗萃物 (Ganoderma lucidum extract, GLE)來評估此細胞模式的可行性,結果發現,不論是Resveratrol或是GLE皆可抑制由TGF-β1誘發的collagen表現量;接著由Ganoderma colossum中萃取出一種三萜類-五味子內酯A (Schisanlactone A, SA),發現其能夠抑制LX-2細胞模式中的collagen增生,顯示其具有抗肝纖維化作用,同時SA也能抑制小鼠巨噬細胞RAW264.7中的發炎反應;進一步發現,在TAA誘發的肝纖維化小鼠活體模式中,SA也能夠降低肝臟中collagen增生與發炎反應。以上結果顯示,TGF-β1誘發LX-2活化細胞模式能夠用來初步評估藥物是否具有抗肝纖維化的能力,且三萜類SA是個有潛力的抗肝纖維化天然物,未來可繼續開發研究並用於肝纖維化的治療。 | zh_TW |
dc.description.abstract | Collagen production by activated hepatic stellate cell (HSC) to encapsulate injury is a wound-healing response in injured liver. HSC activation could be mediated by norepinephrine (NE), a reaction product of dopamine beta-hydroxylase (DBH). In this study, the paracrine role of NE in thioacetamide (TAA)-induced hepatic fibrosis was investigated. In TAA-treated Balb/c mice, the fibrotic liver tissue showed significant increases in the expression of DBH and collagen. Further, immunohistochemical staining indicated DBH increases in parenchymal cells of the fibrotic liver. The hypothesis that the NE secreted by hepatocytes plays a paracrine role to promote HSC activation was thus proposed and verified using hepatoblast cell line HepG2 and HSC cell line LX-2. HepG2 cells express DBH and secrete NE, and that the conditioned medium of HepG2 cells (HCM) could promote collagenesis in LX-2 cells. TAA treatment increased the cellular DBH expression as well as the NE in the culture medium. The conditioned medium of TAA-treated HepG2 cells (T-HCM) was used to culture LX-2 cells, and was found to increase collagen expression in LX-2 cells. The collagenesis induction activity was diminished by pre-treating the HepG2 cells with siRNA of DBH or adding NE antagonists in the conditioned medium. Further, TAA-induced oxidative stress in HepG2 cells was found to account for the induction of DBH expression. This study suggests that chemical intoxication induces the parenchymal release of NE to activate fibrogenesis in HSC. The interruption of parenchymal DBH/NE induction may be a therapeutic strategy to inhibit liver fibrosis.
In order to assess the effects of anti-fibrotic agents, TGF-β1-induced activation of HSC cell line LX-2 was employed and evaluated using two previously reported anti-fibrotic agents, resveratrol and Ganoderma lucidum extract (GLE). Both compounds inhibited the expression of Col(I) and other fibrogenic genes induced by TGF-β1. Schisanlactone A (SA), a triterpenoid purified from Ganoderma colossum, was found to possess anti-fibrotic ability by inhibiting collagenesis in LX-2 cells; moreover, the inflammation induced by lipopolysaccharide in mouse macrophage RAW264.7 cells was also inhibited by SA. Further, SA decreased fibrogenesis and inflammation in the mouse of TAA-induced liver fibrosis. These results suggest that TGF-β1-induced LX-2 cell activation is able to assess the fibrotic activity of natural compounds, and the triterpenoid SA is a potential candidate for the therapy of liver fibrosis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:25:30Z (GMT). No. of bitstreams: 1 ntu-103-D96424002-1.pdf: 5561697 bytes, checksum: 6316405d86eae60cdaa9b0107b787779 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄 I
示意圖目錄 IV 表目錄 V 圖目錄 VI 中文摘要 VIII 英文摘要 X 縮寫表 XII 一、序論 1 1.1 肝纖維化 (Liver fibrosis) 1 1.2 肝纖維化檢驗方法 (Diagnosis of liver fibrosis) 1 1.3 HSC活化的機制 (Mechanisms of HSC activation) 3 1.4 研究肝纖維化之細胞與動物模式 (Cell line and animal model for liver fibrosis) 7 1.5 Dopamine β-hydroxylase/ Norepinephrine 與肝纖維化之關聯 8 1.6 發炎反應 (inflammation)與肝纖維化 9 1.7 肝纖維化治療策略 (Therapeutic strategy for liver fibrosis) 10 1.8 具有抑制肝纖維化能力之天然物 12 1.8.1 白藜蘆醇 (Resveratrol) 12 1.8.2 靈芝 (Ganoderma) 13 1.9 研究目標 14 二、材料與方法 15 2.1 動物實驗 (Animal experiments) 15 2.2 血球計數、肝功能分析、組織學與免疫組織化學染色 (Complete blood count, liver function test, histology and immunohistochemistry staining) 15 2.3 細胞培養 (Cell culture) 16 2.4 細胞內基因表現分析 17 2.4.1 細胞內mRNA的萃取 (Isolation of mRNA) 17 2.4.2 反轉錄酵素反應 (Reverse transciption, RT) 18 2.4.3 即時聚合酶連鎖反應 (Real-time Polymerase chain reaction) 18 2.4.4 聚合酶連鎖反應 (Polymerase chain reaction, PCR) 19 2.5 細胞內蛋白量分析 19 2.5.1 細胞內蛋白質的萃取 (Whole cell lysate extraction) 19 2.5.2 西方墨點法 (Western Blot) 20 2.6 HepG2條件培養液(Conditioned media of HepG2 cells)之製備 20 2.7 細胞培養液中NE與TGF-β1之測定 (NE and TGF-β1 measurement in the culture medium) 21 2.8 siRNA抑制DBH之表現 (siRNA-mediated knockdown of DBH) 21 2.9 細胞內氧化壓力的測定 (Measurement of cellular oxidative stress) 22 2.10 病人檢體之收集 (Clinical subjects) 22 2.11 細胞活性測定 (Cell viability assay) 22 2.12 細胞凋亡相關分子的測定 23 2.12.1 粒線體膜電位 (Mitochondria Membrane Potential)的測定 23 2.12.2 細胞膜完整性 (Membrane integrity)測定 23 2.12.3 細胞內Caspases活性的測定 24 2.13 細胞內DNA含量分析 (DNA content analysis) 24 2.14 明膠蛋白酵素電泳法 (Gelatin zymography) 24 2.15 絲狀肌動蛋白之螢光染色 (Fluorescence staining of F-actin) 25 2.16 五味子內酯A (Schisanlactone A)之純化與分離 26 2.17 統計分析 27 三、實驗結果 28 3.1 在TAA誘發肝纖維化模式之肝實質細胞中發現DBH表現量上升 28 3.2 肝細胞分泌出的NE能夠誘發肝星狀細胞中的纖維增生 28 3.3 TAA在肝細胞中透過引發氧化壓力而促進DBH表現量與NE含量 29 3.4 自體分泌 NE引發LX-2細胞自發性活化 30 3.5 肝纖維化病人血清中DBH上升 30 3.6 建立TGF-β1誘發纖維增生之LX-2細胞模式 31 3.7 五味子內酯A (SA)的純化與鑑定 32 3.8 SA能抑制肝纖維化與發炎反應in vitro and in vivo 33 四、討論 35 參考文獻 73 藥品清單 86 個人履歷表 (Curriculum Vitae) 103 | |
dc.language.iso | zh-TW | |
dc.title | 肝纖維化之分子機制探討與治療藥物評估 | zh_TW |
dc.title | Studies on the molecular mechanism of liver fibrosis and the assessment of anti-fibrotic agents | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 張雅雯 | |
dc.contributor.oralexamcommittee | 林亮音,胡忠怡,歐樂君 | |
dc.subject.keyword | 肝纖維化,肝星狀細胞,多巴胺β羥化?,正腎上腺素,硫代乙醯胺,五味子內酯A, | zh_TW |
dc.subject.keyword | liver fibrosis,hepatic stellate cells,dopamine beta-hydroxylase,norepinephrine,thioacetamide,schisanlactone A, | en |
dc.relation.page | 107 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-01-22 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
顯示於系所單位: | 醫學檢驗暨生物技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 5.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。