請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58677完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Yu-Ting Kao | en |
| dc.contributor.author | 高于婷 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:25:15Z | - |
| dc.date.available | 2016-03-18 | |
| dc.date.copyright | 2014-03-18 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2014-01-22 | |
| dc.identifier.citation | [1] Campisi, J. (1997). The biology of replicative senescence. Eur. J. Cancer., 5, 703-709.
[2] Hayflick, L. and Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Exp. Cell Res., 25, 585-621. [3] Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors.Cell, 120, 513-522. [4] Macieira-Coelho, A. (1966). Action of cortisone on human fibroblasts in vitro. Experientia, 22, 390-391. [5] Greenberg, S.B., Grove, G.L., and Cristofalo, V.J. (1977). Cell size in aging monolayer cultures. In Vitro, 13, 297-300. [6] Mitsui, Y. and Schneider, E.L. (1976). Relationship between cell replication and volume in senescent human diploid fibroblasts. Mech. Ageing Dev.,5, 45-56. [7] Cristofalo, V.J. and Kabakjian, J. (1975). Lysosomal enzymes and aging in vitro: subcellular enzyme distribution and effect of hydrocortisone on cell lifespan. Mech. Ageing Dev.,4, 19-28. [8] Maciera-Coelho, A., Garcia-Giralt, E., and Adrian, M. (1971). Changes in lysosomal associated structures in human fibroblasts kept in resting phase. Proc. Soc. Exp. Biol. Med.,138, 712-718. [9] Brandes, D., Murphy, D.G., Anton, E.B., and Barnard, S. (1972). Ultrastructural and cytochemical changes in cultured human lung cells. J. Ultrastruct. Res.,39, 465-483. [10] Comings, D.E. and Okada, T.A., 1970. Electron microscopy of human fibroblasts in tissue culture during logarithmic and confluent stages of growth. Exp. Cell Res.,61, 295–301. [11] Lipetz, J. and Cristofalo, V.J. (1972). Ultrastructural changes accompanying the aging of human diploid cells in culture. J. Ultrastruct. Res., 39, 43-56. [12] Hampel,B., Malisan,F., Niederegger,H., Testi,R., and Jansen-Durr,P. (2004). Differential regulation of apoptotic cell death in senescent human cells. Exp. Gerontol., 39, 1713-1721. [13] Millis, A.J., Hoyle, M., McCue, H.M., and Martini, H. (1992) a. Differential expression of metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human fibroblasts. Exp. Cell Res., 201, 373-379. [14] Linskens, M.H., Feng, J., Andrews,W.H., Enlow, B.E., Saati, S.M., Tonkin, L.A., Funk, W.D., Villeponteau, B. (1995). Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res., 23, 3244-3251. [15] Wang, E., Lee, M.J., and Pandey, S. (1994). Control of fibroblast senescence and activation of programmed cell death. J. Cell Biol., 54, 432-439. [16] Narita,M., Nunez,S., Heard,E., Narita,M., Lin,A.W., Hearn,S.A., Spector,D.L., Hannon,G.J., Lowe,S.W. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell, 113, 703-716. [17] Wada,T., Joza,N., Cheng,H.Y., Sasaki,T., Kozieradzki,I., Bachmaier,K., Katada,T., Schreiber,M., Wagner,E.F., Nishina,H., Penninger,J.M. (2004). MKK7 couples stress signalling to G2/M cell-cycle progression and cellular senescence. Nat. Cell Biol., 6, 215-226. [18] Zhu,J., Woods,D., McMahon,M., Bishop,J.M. (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev., 12, 2997-3007. [19] Ben-Porath, I. and WeinbergInt, R.A., (2005). The signals and pathways activating cellular senescence. J Biochem Cell Biol., 37, 961-976. [20] de Lange, T. (2002). Protection of mammalian telomeres. Oncogene, 21, 532-540. [21] Mathon, N.F. and Lloyd, A.C. (2001). Milestones in cell division: Cell senescence and cancer. Nat. Rev. Cancer, 1, 203-213. [22] Rogan, E.M., Bryan, T.M., Hukku, B., Maclean, K., Chang, A.C., Moy, E.L., Englezou, A., Warneford, S.G., Dalla-Pozza, L. and Reddel, R.R. (1995). Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalization of Li-Fraumeni syndrome fibroblasts. Mol. Cell Biol., 15, 4745-4753. [23] Bond, J.A., Haughton, M.F., Rowson, J.M., Smith, P.J., Gire, V., Wynford-Thomas, D., and Wyllie, F.S. (1999). Control of Replicative Life Span in Human Cells: Barriers to Clonal Expansion Intermediate Between M1 Senescence and M2 Crisis. Mol. Cell Biol., 19, 3103-3114. [24] Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, C.B., Shay, J.W., Lichtsteiner, S., and Wright, W.E. (1998). Extension of life-span by introduction of telomerase into normal human cells. Science, 279, 349-352. [25] Counter, C.M., Hahn, W.C., Wei, W., Caddle, S.D., Beijersbergen, R.L., Lansdorpi, P.M., Sedivy, J.M., and Weinberg, R.A. (1998). Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc.Natl.Acad.Sci. U.S.A., 95, 14723-14728. [26] Vaziri, H. and Benchimol, S. (1998). Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol., 8, 279-282. [27] Saito, H., Hammond, A.T., and Moses, R.E. (1995). The effect of low oxygen tension on the in vitro-replicative life span of human diploid fibroblast cells and their transformed derivatives. Exp. Cell Res., 217, 272-279. [28] Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S.,and Campisi, J. (2003). Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat. Cell Biol., 5, 741-747. [29] Mooi,W.J. and Peeper,D.S. (2006). Oncogene-induced cell senescence-halting on the road to cancer. N. Engl. J. Med., 355, 1037-1046. [30] Janzen,V., Forkert, R., Fleming, H.E., Saito, Y., Waring, M.T., Dombkowski, D.M., Cheng, T., DePinho, R.A., Sharpless, N.E., and Scadden, D.T. (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature, 443, 421-426. [31] Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano,E.E., Linskens, M., Rubelj, I.,and Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A, 92, 9363-9367. [32] Kurz, D.J., Decary, S., Hong, Y.,and Erusalimsky, J.D. (2000). Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J. Cell Sci., 113, 3613-3622. [33] Lee, B.Y., Han, J.A., Im, J.S., Morrone, A., Johung, K., Goodwin, E.C., Kleijer, W.J., DiMaio, D.,and Hwang, E.S. (2006). Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell, 5, 187-195. [34] Severino, J., Allen, R.G., Balin, S., Balin, A.,and Cristofalo, V.J. (2000). Is betagalactosidase staining a marker of senescence in vitro and in vivo? Exp. Cell Res., 257, 162-171. [35] Kulju, K. S. and Lehman, J. M. (1995). Increased p53 protein associated with aging in human diploid fibroblasts. Exp. Cell Res., 217, 336-345. [36] Smogorzewska, A. and de Lange, T. (2002). Different telomere damage signaling pathways in human and mouse cells. EMBO J., 21, 4338-4348. [37] Vaziri,H., West, M.D., Allsopp, R.C., Davison, T.S., Wu, Y.S., Arrowsmith, C.H., Poirier, G.G.,and Benchimol, S. (1997) ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J., 16, 6018-6033. [38] Atadja,P. Wong, H., Garkavtsev, I., Veille, C., and Riabowol, K. (1995). Increased activity of p53 in senescing fibroblasts. Proc. Natl. Acad. Sci. U. S. A, 92, 8348-8352 [39] Gire,V. and Wynford-Thomas,D. (1998). Reinitiation of DNA synthesis and cell division in senescent human fibroblasts by microinjection of anti-p53 antibodies. Mol. Cell Biol., 18, 1611-1621. [40] Pedeux,R., Sengupta, S., Shen, J.C., Demidov, O.N., Saito, S., Onogi, H., Kumamoto, K., Wincovitch, S., Garfield, S.H., McMenamin, M., Nagashima, M., Grossman, S.R., Appella, E., and Harris, C.C. (2005). ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation. Mol. Cell Biol., 25, 6639-6648. [41] Sherr,C.J. (1998). Tumor surveillance via the ARF-p53 pathway. Genes Dev., 12, 2984-2991. [42] Kamijo,T., Zindy, F., Roussel, M.F., Quelle, D.E., Downing, J.R., Ashmun, R.A., Grosveld, G., and Sherr, C.J. (1997). Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell, 91, 649-659. [43] Munro,J., Stott, F.J., Vousden, K.H., Peters, G., and Parkinson, E.K. (1999). Role of the alternative INK4A proteins in human keratinocyte senescence: evidence for the specific inactivation of p16INK4A upon immortalization. Cancer Res., 59, 2516-2521. [44] Dimri,G.P., Itahana, K., Acosta, M., and Campisi, J. (2000). Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Mol. Cell Biol., 20, 273-285. [45] Noda, A., Ning, Y., Venable, S.F., Pereira-Smith, O.M., and Smith, J.R. (1994) Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp. Cell Res., 211, 90-98. [46] Kim,W.Y. and Sharpless,N.E. (2006) The regulation of INK4/ARF in cancer and aging. Cell, 127, 265-275. [47] Wong, H. and Riabowol, K. (1996). Differential CDK-inhibitor gene expression in aging human diploid fibroblasts. Exp. Gerontol., 31, 311-325. [48] Hara, E., Smith, R., Parry, D., Tahara, H., Stone, S., and Peters, G. (1996). Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol. Cell Biol., 16, 859-867. [49] Brenner,A.J., Stampferand, M.R., Aldaz, C.M. (1998). Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Oncogene, 17, 199-205. [50] Bracken,A.P., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gargiulo, G., Beekman, C., Theilgaard-Monch, K., Minucci, S., Porse, B.T., Marine, J.C., Hansen, K.H., and Helin, K. (2007). The Polycomb group proteins bind throughout the INK4AARF locus and are disassociated in senescent cells. Genes Dev., 21, 525-530. [51] Gil,J., Bernard, D., Martinez, D., and Beach, D. (2004) Polycomb CBX7 has a unifying role in cellular lifespan. Nat. Cell Biol., 6, 67-72. [52] Jacobs,J.J., Kieboom, K., Marino, S., DePinho, R.A., and van Lohuizen, M. (1999). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature, 397, 164-168. [53] Itahana,K. Zou, Y., Itahana, Y., Martinez, J.L., Beausejour, C., Jacobs, J.J.L., van Lohuizen, M., Band, V., Campisi, J., and Dimri, G.P. (2003). Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1. Mol. Cell Biol., 23, 389-401. [54] Funayama,R., Saito, M., Tanobe, H., and Ishikawa, F. (2006). Loss of linker histone H1 in cellular senescence. J. Cell Biol., 175, 869-880. [55] Cohen, S., and Carpenter, G. (1975). Human epidermal growth factor: isolation and chemical and biological properties. Proc. Natl. Acad. Sci. U. S. A, 72, 1317-1321. [56] Lembach, K.J. (1976). Induction of human fibroblast proliferation by epidermal growth factor (EGF): Enhancement by an EGF-binding arginine esterase and by ascorbate. Proc. Natl. Acad. Sci. U. S. A, 73, 183-187. [57] Park, W.Y., Park, J.S., Cho, K.A., Kim, D.I., Ko, Y.G., Seo, J.S., and Park, S.C. (2000). Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J. Biol. Chem., 275, 20847-20852. [58] Solchaga, L.A., Penick, K., Porter, J.D., Goldberg, V.M., Caplan, A.I., and Welter, J.F. (2005). FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells. J. Cell Physiol., 203, 398-409. [59] Tsutsumi, S., Shimazu, A., Miyazaki, K., Pan, H., Koike, C., Yoshida, E.,Takagishi, and K., Kato, Y. (2001) Retention of multilineage differentiation potential of mesenchymal stem cells during proliferation in response to FGF. Biochem. Biopys. Res.Commun., 288, 413-419. [60] Tomomi, I., Sawada, R., Fujiwara, Y., Seyama, Y., and Tsuchiya,T. (2007). FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-β2. Biochem. Biophys. Res. Commun., 359, 108-114. [61] Muggleton-Harris, A.L., and DeSimone, D.W. (1980). Replicative potentials of various fusion products between WI-38 and SV40 transformed WI-38 cells and their components. Somatic Cell Genet., 6, 689-698. [62] Krtolica, A., Parrinello, S., Lockett, S., Desprez, P.Y., and Campisi, J. (2001). Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc. Natl. Acad. Sci. U S A, 98, 12072-12077. [63] Choi, H.R., Cho, K.A., Kang, H.T., Lee, J.B., Kaeberlein, M., Suh, Y., Chung, I.K., and Park, S.C. (2011). Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix. Aging Cell, 10, 148-157. [64] Nichols, M.G., and Foster, T.H. (1994). Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids. Phys. Med. Biol., 39,2161-2181. [65] Lee, W.Y., Chang, Y.H., Yeh, Y.C., Chen, C.H., Lin, K.M., Huang, C.C., Chang, Y., and Sung, H.W. (2009). The use of injectable spherically symmetric cell aggregates self-assembled in a thermo-responsive hydrogel for enhanced cell transplantation. Biomaterials, 30, 5505-5513. [66] Studer, L., Csete, M., Lee, S.H., Kabbani, N., Walikonis, J., Wold, B., and McKay, R. (2000). Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci., 20(19), 7377-7383. [67] Tsai, C.C., Chen, Y.J., Yew, T.L., Chen, L.L., Wang, J.Y., Chiu, C.H., and Hung, S.C. (2011). Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood, 117, 459-469. [68] Leontieva, O.V., Natarajan, V., Demidenko, Z.N., Burdelya, L.G., Gudkov, A.V., and Blagosklonny, M.V. (2012). Hypoxia suppresses conversion from proliferative arrest to cellular senescence. Proc. Natl. Acad. Sci. U S A, 109, 13314-13318. [69] Suh, J.K.F. and Matthew, H.W.T. (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 21 (24), 2589-2598. [70] Fakhry, A., Schneider, G.B., Zaharias, R., and Senel, S. (2004). Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials, 25 (11), 2075-2079. [71] Sechriest, V.F., Miao, Y.J., Niyibizi, C., Westerhausen-Larson, A., Matthew, H.W., Evans, C.H., Fu, F.H., and Suh, J.K. (2000). GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J. Biomed. Mater. Res., 49 (4), 534-541. [72] Raghunath, J., Rollo, J., Sales, K. M., Butler, P. E., and Seifalian, A. M. (2007). Biomaterials and scaffold design: key to tissue-engineering cartilage. Biotechnol. Appl. Biochem., 46, 73-84. [73] Muzzarelli, R.A.A. (2009). Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydrate Polymers, 76, 167-182. [74] Cheng, N.C., Wang, S., and Young, T.H. (2012). The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials, 33, 1748-1758. [75] Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, and Beck JC. (1998). Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc. Natl. Acad. Sci., 95, 10614-10619. [76] Angello, J. C. (1992). Replicative potential and the duration of the cell cycle in human fibroblasts: coordinate stimulation by epidermal growth factor. Mech. Ageing. Dev. , 62, 1-12. [77] Kaji, K. and Matsuo, M. (1983). Responsiveness of human lung diploid fibroblast ageing in vitro to epidermal growth factor: saturation density and lifespan. Mech. Ageing. Dev., 22, 129-133. [78] Coutu1, D. L. and Galipeau, J. (2011). Roles of FGF signaling in stem cell self-renewal, senescence and aging. Aging, 3(10), 920-934. [79] Beausejour, C.M., Krtolica, A., Galimi, F., Narita, M., Lowe, S.W., Yaswen, P., and Campisi, J. (2003). Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J., 22, 4212-4222. [80] Chen, Y.H., Wang, I.J. and Young, T.H. (2009). Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes. Tissue Eng. A., 15, 2001-2013. [81] Minamino,T. Mitsialis, S.A., and Kourembanas, S. (2001). Hypoxia extends the life span of vascular smooth muscle cells through telomerase activation. Mol. Cell Biol., 21, 3336–3342. [82] Harley, C.B., Futcher, A.B., and Greider , C.W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345, 458–460. [83] Harman, D. (1981). The aging process. Proc. Natl Acad. Sci., 78, 7124–7128. [84] Nishi, H., Nakada, T., Kyo, S., Inoue, M., Shay, J.W., and Isaka, K. (2004). Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol. Cell Biol., 24, 6076–6083. [85] Katschinski, D.M. (2006). Is there a molecular connection between hypoxia and aging? Exp. Gerontol., 41, 482–484. [86] Boraldi, F., Annovi, G., Carraro, F., Naldini, A., Tiozzo, R., Sommer, P., and Quaglino, D. (2007). Hypoxia influences the cellular cross-talk of human dermal fibroblasts. A proteomic approach. Biochim. Biophys. Acta., 1774, 1402-1413. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58677 | - |
| dc.description.abstract | 人類纖維母細胞的體外培養造成複製性老化的概念已提出超過50年。從那時起,從各種動物體取出的許多類型的细胞,已被證明有一個有限的壽命。此外,在許多文獻中顯示生長因子能增進细胞生長、增殖和细胞分化。但在我們的研究中,我們對生長因子抱持著一個不同的態度。雖然表皮生長因子(EGF)可以刺激增殖和提高複製的潛力,但長期培養的結果與没有加EGF的组別之間没有顯著差異。透過檢視老化的標準,經表皮生長因子處理的细胞顯示了衰老的特徵。因此,我們用表皮生長因子誘導人類包皮纖維母细胞產生老化,製造不同程度的可逆老化模型。我們進一步將老化的細胞培養於幾丁聚醣上,使他們形成球型,造成類似低氧的環境,使老化的細胞回春。於此,我們指出於幾丁聚醣表面培養3天足以使老化的細胞呈現年輕的狀態,且不走向癌轉移。我們採用偵測SA-s-gal的活性、p53基因和p21基因表現及BrdU增殖試驗,來鑑定此老化的細胞是否回春。 | zh_TW |
| dc.description.abstract | Replicative senescence was first described formally more than 50 years ago, for human fibroblasts in culture. Since then, many cell types from a variety of animal species have been shown to have a finite life span. In addition, growth factors were considered to enhance cellular growth, proliferation and cellular differentiation in many studies. In this study, we approached a different angle about growth factor. Although EGF could stimulate proliferation and increase replicative potential, the fate of long-term culture had no difference between the groups without EGF. EGF treated cells displayed senescent characteristics, which was provided by examining senescence marker. Thus, we used EGF to induced human foreskin fibroblast to express a senescence phenotype, and founded a model to make different degrees of reversible senescence. We further transferred these senescent cells on chitosan, and made them form spheroids, which could be a hypoxia circumstance, to rejuvenate. Herein, we reported that three days culture on chitosan was sufficient to rejuvenate senescent cells to an apparently youthful state without transformation. The identity of the rejuvenated cells as having been derived from senescent cells has been confirmed by a variety of methods, including SA-s-gal activity, p53-p21 gene expression and BrdU proliferation assay. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:25:15Z (GMT). No. of bitstreams: 1 ntu-102-R99548063-1.pdf: 2432669 bytes, checksum: 939069bfccb350ac6fc453a2b6d9fce3 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Content
Chapter 1 Introduction 1 1.1 Objectives 2 1.2 Experimental design 2 Chapter 2 Literature Review 4 2.1 Cellular Senescence 4 2.1-1 Characteristics of senescent cells 5 2.1-2 Growth arrest 6 2.1-3 The signals initiating cellular senescence 7 2.1-3.1 Replicative senescence 8 2.1-3.2 Stress-induced premature senescence 9 2.1-4 Senescence biomarkers 9 2.1-4.1 Senescence-associated β-galactosidase 10 2.1-4.2 Signalling pathways in cellular senescence 11 2.2 Growth Factor 15 2.2-1Epidermal Growth Factor 15 2.2-2Basic Fibroblast Growth Factor 16 2.3 Means of rejuvenating senescent cells 17 2.3-1 Microenvironment 17 2.3-2 Hypoxia 17 2.4 The properties and applications of chitosan 18 Chapter 3 Materials and Methods 20 3.1 Cell Culture 20 3.2 Immunofluorescence Staining 20 3.3 Population Doubling Curve 21 3.4 Senescence-associated beta-galactosidase (SA-s-gal) Activity 22 3.5 Western Blotting 22 3.6 Preparation of Chitosan-coated Plates 23 3.7 Cell apoptosis 23 3.8 BrdU proliferation assay 24 3.9 Soft agar colony formation assay 24 3.10 Statistical Analysis 25 Chapter 4 Results 26 4.1 Primary cell culture 26 4.2 Population doubling curve 26 4.3 Cell morphology 27 4.4 Senescence-associated beta-galactosidase activity 27 4.5 The gene expression in p53, p21 and p16 28 4.6 The formation of cell spheres on chitosan film 29 4.7 The optimal culture timing on chitosan film 29 4.8 Rejuvenation Examination 30 4.8-1 Senescence-associated beta-galactosidase activity 30 4.8-3 The gene expression in p53 and p21 31 4.8-4 BrdU proliferation assay 31 4.9 Transformation examination 31 4.10 HIF1-α expression 32 Chapter 5 Discussion 33 Chapter 6 Conclusion 38 Figures 39 Reference 52 | |
| dc.language.iso | en | |
| dc.subject | 生長因子 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 回春 | zh_TW |
| dc.subject | 低氧 | zh_TW |
| dc.subject | Hypoxia | en |
| dc.subject | Senescence | en |
| dc.subject | Chitosan | en |
| dc.subject | Growth Factor | en |
| dc.subject | Rejuvenation | en |
| dc.title | 幾丁聚醣對以生長因子誘導產生老化之人類纖維母細胞之影響 | zh_TW |
| dc.title | The Influence of Senescent Human Fibroblast Induced by Growth Factor on Chitosan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 婁培人(Pei-Jen Lou),洪智煌(Chih-Huang Hung) | |
| dc.subject.keyword | 生長因子,老化,幾丁聚醣,回春,低氧, | zh_TW |
| dc.subject.keyword | Growth Factor,Senescence,Chitosan,Rejuvenation, Hypoxia, | en |
| dc.relation.page | 67 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 2.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
