請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58662完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳銘憲 | |
| dc.contributor.author | Yi-Ling Lin | en |
| dc.contributor.author | 林怡伶 | zh_TW |
| dc.date.accessioned | 2021-06-16T08:24:32Z | - |
| dc.date.available | 2014-01-27 | |
| dc.date.copyright | 2014-01-27 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2014-01-22 | |
| dc.identifier.citation | [1] D. Agarwal, B. Chen, and P. Elango. “Spatio-temporal models for estimating click-through rate.” In Proceedings of the 18th international conference on World Wide Web(WWW’09). pp. 21-30, 2009.
[2] A. Ahmed, Y. Low, M. Aly, V. Josifovski, and A. J. Smola. “Scalable distributed inference of dynamic user interests for behavioral targeting.” In Proceedings of the 17th ACM SIGKDD international conference on Knowledge Discovery and Data mining(KDD’11). pp. 114-122, 2011. [3] F. Alt, M. Balz, S. Kristes, A. S. Shirazi, J. Mennenoh, A. Schmidt, H. Schroder, and M. Goedicke. “Adaptive user profiles in pervasive advertising environments.” In Proceedings of the European conference on Ambient Intelligence (AmI’09). pp. 276-286, 2009. [4] M. Aly, A. Hatch, V. Josifovski, and V. K. Narayanan. “Web-scale user modeling for targeting.” In Proceedings of the 21st international conference companion on World Wide Web (WWW’12 Companion). pp. 3-12, 2012. [5] N. Archak, V. S. Mirrokni, and S. Muthukrishnan. “Mining advertiser-specific user behavior using adfactors.” In Proceedings of the 19th international conference on World Wide Web (WWW’10). pp. 31-40, 2010. [6] A. Ashkan and C. L.A. Clarke. “Characterizing commercial intent.” In Proceedings of the 18th ACM international Conference on Information and Knowledge Management (CIKM’09). pp. 67-76, 2009. [7] A. Ashkan, C. L. A. Clarke, E. Agichtein, and Q. Guo. “Estimating ad clickthrough rate through query intent analysis.” In Proceedings of the 2009 IEEE/WIC/ACM international joint conference on Web Intelligence and Intelligent Agent Technology (WI-IAT’09). pp. 222-229, 2009. [8] H. Cheng, R. V. Zwol, J. Azimi, E. Manavoglu, R. Zhang, Y. Zhou, and V. Navalpakkam. “Multimedia features for click prediction of new ads in display advertising.” In Proceedings of the 18th ACM SIGKDD international conference on Knowledge Discovery and Data mining (KDD’12). pp. 777-785, 2012. [9] A. Farahat and M. C. Bailey. “How effective is targeted advertising?” In Proceedings of the 21st international conference on World Wide Web (WWW’12). pp. 111-120, 2012. [10] A. Fuxman, A. Kannan, Z. Li, and P. Tsaparas. “Enabling direct interest-aware audience selection.” In Proceedings of the 21st ACM international Conference on Information and Knowledge Management (CIKM’12). pp. 575-584, 2012. [11] A. Ghose and S. Yang. “An empirical analysis of sponsored search performance in search engine advertising.” In Proceedings of the 2008 international conference on Web Search and Data Mining (WSDM’08). pp. 241-250, 2008. [12] J. Jaworska and M. Sydow. “Behavioural targeting in on-line advertising: an empirical study.” In Proceedings of the 9th international conference on Web Information Systems Engineering (WISE’08). pp. 62-76, 2008. [13] A. Kolesnikov, Y. Logachev, and V. Topinskiy. “Predicting CTR of new ads via click prediction.” In Proceedings of the 21st ACM international Conference on Information and Knowledge Management (CIKM’12). pp. 2547-255, 2012. [14] J. Li, P. Zhang, Y. Cao, P. Liu, L. Guo. “Efficient behavior targeting using SVM ensemble indexing.” In IEEE 12th International Conference on Data Mining (ICDM’12). pp. 409-418, 2012. [15] N. Liu, J. Yan, D. Shen, Depin Chen, Z. Chen, and Y. Li. “Learning to rank audience for behavioral targeting.” In Proceedings of the 33rd international ACM SIGIR conference on research and development in Information Retrieval (SIGIR’10). pp. 719-720, 2010. [16] Y. Liu, S. Pandey, D. Agarwal, and V. Josifovski. “Finding the right consumer: optimizing for conversion in display advertising campaigns.” In Proceedings of the fifth ACM international conference on Web Search and Data Mining (WSDM’12). pp. 473-482, 2012. [17] T. Mori. “Information gain ratio as term weight: the case of summarization of IR results.” In Proceedings of the 19th international conference on Computational Linguistics (COLING’02). pp. 1-7, 2002. [18] S. Pandey, K. Punera, M. Fontoura, and V. Josifovski. “Estimating advertisability of tail queries for sponsored search.” In Proceedings of the 33rd international ACM SIGIR conference on research and development in Information Retrieval (SIGIR’10). pp. 563-570, 2010. [19] S. Pandey, M. Aly, A. Bagherjeiran, A. Hatch, P. Ciccolo, A. Ratnaparkhi, and M. Zinkevich. “Learning to target: what works for behavioral targeting.” In Proceedings of the 20th ACM international Conference on Information and Knowledge Management (CIKM’11), pp. 1805-1814, 2011. [20] K. Punera and S. Merugu. “The anatomy of a click: modeling user behavior on web information systems.” In Proceedings of the 19th ACM international Conference on Information and Knowledge Management (CIKM’10). pp. 989-998, 2010. [21] M. Regelson and D. Fain 'Predicting click-through rate using keyword clusters.' In Proceedings of the 7th ACM conference on Electronic Commerce (EC’06), 2006. [22] M. Richardson, E. Dominowska, and R. Ragno. “Predicting clicks: estimating the click-through rate for new ads.” In Proceedings of the 16th international conference on World Wide Web (WWW’07). pp. 521-530, 2007. [23] S. Tu and C. Lu. “Topic-based user segmentation for online advertising with latent dirichlet allocation.” In Proceedings of the 6th international conference on Advanced Data Mining and Applications (ADMA'10). 259-269, 2010. [24] B. Wang, Z. Li, J. Tang, K. Zhang, S. Chen, L. Ru. “Learning to advertise: how many ads are enough?” In Proceedings of the 15th Pacific-Asia conference on Knowledge Discovery and Data Mining (PAKDD’11). pp. 506-518, 2011. [25] C. J. Wang and H. H. Chen. “Learning to predict the cost-per-click for your ad words.” In Proceedings of the 21st ACM international Conference on Information and Knowledge Management (CIKM’12). pp. 2291-2294, 2012. [26] X. Wu, J. Yan, N. Liu, S. Yan, Y. Chen, and Z. Chen. 2009. “Probabilistic latent semantic user segmentation for behavioral targeted advertising.” In Proceedings of the third international workshop on Data mining and Audience intelligence for Advertising (ADKDD’09). pp. 10-17, 2009. [27] X. Xin, I. King, R. Agrawal, M. R. Lyu, and H. Huang. “Do ads compete or collaborate?: designing click models with full relationship incorporated.” In Proceedings of the 21st ACM international Conference on Information and knowledge management (CIKM’ 12). pp. 1839-1843, 2012. [28] W. Xu, E. Manavoglu, and E. Cantu-Paz. “Temporal click model for sponsored search.” In Proceedings of the 33rd international ACM SIGIR conference on research and development in Information Retrieval (SIGIR’10). pp. 106-113, 2010. [29] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen. “How much can behavioral targeting help online advertising?” In Proceedings of the 18th international conference on World Wide Web (WWW’09). pp. 261-270, 2009. [30] Z. A. Zhu, W. Chen, T. Minka, C. Zhu, and Z. Chen. “A novel click model and its applications to online advertising.” In Proceedings of the third ACM international conference on Web Search and Data Mining (WSDM’10). pp. 321-330, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58662 | - |
| dc.description.abstract | 近年來,智慧型手機變得相當普遍,而在相關產業當中,手機廣告是主要的獲益模式之一。有鑑於此,將適合的廣告推送給目標客群已經變成一項熱門且重要的研究議題。再者,我們認為使用者偏好與興趣會直接反應在手機軟體(app)的使用上,因此本研究特別探討手機軟體(app)在使用者點擊廣告時所扮演的角色,並透過分析不同類型app 的使用者群,讓廣告業者可以找到潛在的目標客群。另一方面,在廣告相關研究中,透過分析使用者行為並用以推薦使用者偏好的廣告是一大研究主流。然而對手機廣告而言,要如何將此概念應用在大量且快速增加的行動手機資料之上,在研究上仍是一項挑戰。
在本論文中,我們基於同時考慮使用者、app、廣告,提出創新的三階層分群系統,從使用者產生的大量行動資料中建立標籤式的廣告描述(profile)。分群系統會從廣告顯示與點擊的紀錄中,根據使用者使用手機軟體的喜好,以及廣告在各類手機廣告的點擊次數,產生彼此相依的使用者、app、廣告三種分群。除此之外,由於使用者行動資料每天持續快速且大量產生,為了實際應用的需求,我們在研究中採用漸進式分群系統用以快速更新分群結果。基於分群結果,標籤式廣告敘述建立系統會從使用者個人資訊中,計算出各分群最具代表性的標籤。最後我們將系統所產生的廣告標籤實際應用於廣告推薦的問題,實驗結果驗證了所提出系統具備高準確率,且其效能符合即時更新的需求。 | zh_TW |
| dc.description.abstract | Smart phones have become very ubiquitous in recent years, and in-app advertising is a primary business model for mobile applications. Following this trend, researchers are interested in how to provide appropriate ads to target users. In this thesis, we particularly focus on considering and analyzing the role of apps in ad-clicking behavior. We believe that user preference will be directly reflected on the apps they use. To capture the hidden interests of their target customers, advertisers should identify the characteristics of apps. On the other hand, adaptive profiling has been proposed to match user profiles and campaign profiles. However, when applying this concept to mobile advertising, how to produce profiles from tremendous amounts of daily mobile data is a challenging issue. We explore the problem of producing mobile ad profiles from mobile user-generated data and incorporate the usage log of apps into ad profiling. We propose a novel 3-layer clustering framework to realize the tagging-based mobile ad profiling. Moreover, since new usage logs will be generated continually, an incremental mechanism is also designed to address the update issue and provide up-to-date clustering results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T08:24:32Z (GMT). No. of bitstreams: 1 ntu-102-R00921042-1.pdf: 1510426 bytes, checksum: 0d84e5e5a26ff208d5e9d26287a663b4 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 口試委員會審定書 .............................................i
Acknowledgements ........................................ ii 中文摘要 ................................................ iii ABSTRACT .................................................iv CONTENTS ................................................. v LIST OF FIGURES ........................................ vii LIST OF TABLES ........................................ viii Chapter 1 Introduction ................................... 1 Chapter 2 Problem Description and System Framework ....... 7 Chapter 3 Incremental 3-Layer Clustering ................ 10 3.1 3-layer Clustering ................................ 10 3.1.1 Layer1: User Clustering ....................... 10 3.1.2 Layer2: App Clustering ........................ 12 3.1.3 Layer3: Ad Clustering ......................... 13 3.2 Incremental Clustering ............................ 15 Chapter 4 Tagging-based Mobile Ad Profiling ............. 17 4.1 User Profile Generation ........................... 17 4.2 Tag Candidate Generation .......................... 19 4.3 Tag Weight Derivation based on Information Gain ... 20 Chapter 5 Experiment .................................... 25 5.1 Experimental Design ............................... 25 5.2 Case Study ........................................ 26 5.2.1 Tagging-based Profiles ........................ 26 5.2.2 Difference between Weekday and Weekend ........ 28 5.3 Performance Comparison ............................ 29 5.3.1 Efficiency of Incremental User Clustering ..... 29 5.3.2 Effectiveness of 3-layer Clustering ........... 31 5.4 Parameter Studies ................................. 32 Chapter 6 Conclusion .................................... 35 Chapter 7 Related Work .................................. 36 REFERENCES .............................................. 38 | |
| dc.language.iso | en | |
| dc.subject | 手機廣告 | zh_TW |
| dc.subject | 廣告剖析 | zh_TW |
| dc.subject | 分群演算法 | zh_TW |
| dc.subject | 漸進式更新 | zh_TW |
| dc.subject | 使用者行為定位 | zh_TW |
| dc.subject | Ad Profiling | en |
| dc.subject | Incremental Update | en |
| dc.subject | User Behavior Targeting | en |
| dc.subject | Mobile Advertisement | en |
| dc.subject | Clustering Algorithm | en |
| dc.title | 建構標籤式行動廣告的漸進式三階層分群系統 | zh_TW |
| dc.title | Constructing Tagging-based Mobile Ad Profiling: An Incremental 3-layer Clustering Framework | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林永松,呂俊賢,陳正君,曾祺堯 | |
| dc.subject.keyword | 手機廣告,廣告剖析,分群演算法,漸進式更新,使用者行為定位, | zh_TW |
| dc.subject.keyword | Mobile Advertisement,Ad Profiling,Clustering Algorithm,Incremental Update,User Behavior Targeting, | en |
| dc.relation.page | 42 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-01-23 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
