請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5861完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 嚴震東(Chen-Tung Yeh) | |
| dc.contributor.author | Han-Yuan Yeh | en |
| dc.contributor.author | 葉瀚元 | zh_TW |
| dc.date.accessioned | 2021-05-16T16:17:53Z | - |
| dc.date.available | 2013-08-25 | |
| dc.date.available | 2021-05-16T16:17:53Z | - |
| dc.date.copyright | 2013-08-25 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | Adachi, K., Fujita, S., Yoshida, A., Sakagami, H., Koshikawa, N., and Kobayashi, M. (2013). Anatomical and electrophysiological mechanisms for asymmetrical excitatory propagation in the rat insular cortex: In vivo optical imaging and whole-cell patch-clamp studies. J Comp Neurol 521, 1598-1613.
Al-Khater, K.M., and Todd, A.J. (2009). Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. J Comp Neurol 515, 629-646. Allen, G.V., Saper, C.B., Hurley, K.M., and Cechetto, D.F. (1991). Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol 311, 1-16. Apkarian, A.V., Hashmi, J.A., and Baliki, M.N. (2011). Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain 152, S49-64. Baba, H., Ji, R.R., Kohno, T., Moore, K.A., Ataka, T., Wakai, A., Okamoto, M., and Woolf, C.J. (2003). Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Mol Cell Neurosci 24, 818-830. Baliki, M.N., Chialvo, D.R., Geha, P.Y., Levy, R.M., Harden, R.N., Parrish, T.B., and Apkarian, A.V. (2006). Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26, 12165-12173. Baumgartner, U., Iannetti, G.D., Zambreanu, L., Stoeter, P., Treede, R.D., and Tracey, I. (2010). Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: a high-resolution fMRI study. J Neurophysiol 104, 2863-2872. Benison, A.M., Chumachenko, S., Harrison, J.A., Maier, S.F., Falci, S.P., Watkins, L.R., and Barth, D.S. (2011). Caudal granular insular cortex is sufficient and necessary for the long-term maintenance of allodynic behavior in the rat attributable to mononeuropathy. J Neurosci 31, 6317-6328. Benison, A.M., Rector, D.M., and Barth, D.S. (2007). Hemispheric mapping of secondary somatosensory cortex in the rat. J Neurophysiol 97, 200-207. Bennett, G.J., and Xie, Y.K. (1988). A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87-107. Berta, T., Poirot, O., Pertin, M., Ji, R.R., Kellenberger, S., and Decosterd, I. (2008). Transcriptional and functional profiles of voltage-gated Na(+) channels in injured and non-injured DRG neurons in the SNI model of neuropathic pain. Mol Cell Neurosci 37, 196-208. Berthier, M., Starkstein, S., and Leiguarda, R. (1988). Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 24, 41-49. Bester, H., Beggs, S., and Woolf, C.J. (2000). Changes in tactile stimuli-induced behavior and c-Fos expression in the superficial dorsal horn and in parabrachial nuclei after sciatic nerve crush. J Comp Neurol 428, 45-61. Brooks, J.C., Zambreanu, L., Godinez, A., Craig, A.D., and Tracey, I. (2005). Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 27, 201-209. Carter, M.E., Yizhar, O., Chikahisa, S., Nguyen, H., Adamantidis, A., Nishino, S., Deisseroth, K., and de Lecea, L. (2010). Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat Neurosci 13, 1526-1533. Cauda, F., D'Agata, F., Sacco, K., Duca, S., Geminiani, G., and Vercelli, A. (2011). Functional connectivity of the insula in the resting brain. Neuroimage 55, 8-23. Chaplan, S.R., Bach, F.W., Pogrel, J.W., Chung, J.M., and Yaksh, T.L. (1994). Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53, 55-63. Choi, Y., Yoon, Y.W., Na, H.S., Kim, S.H., and Chung, J.M. (1994). Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59, 369-376. Decosterd, I., and Woolf, C.J. (2000). Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87, 149-158. Djouhri, L., Fang, X., Koutsikou, S., and Lawson, S.N. (2012). Partial nerve injury induces electrophysiological changes in conducting (uninjured) nociceptive and nonnociceptive DRG neurons: Possible relationships to aspects of peripheral neuropathic pain and paresthesias. Pain 153, 1824-1836. Djouhri, L., Koutsikou, S., Fang, X., McMullan, S., and Lawson, S.N. (2006). Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors. J Neurosci 26, 1281-1292. Dum, R.P., Levinthal, D.J., and Strick, P.L. (2009). The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci 29, 14223-14235. Fujita, S., Adachi, K., Koshikawa, N., and Kobayashi, M. (2010). Spatiotemporal dynamics of excitation in rat insular cortex: intrinsic corticocortical circuit regulates caudal-rostro excitatory propagation from the insular to frontal cortex. Neuroscience 165, 278-292. Garcia-Larrea, L. (2012). The posterior insular-opercular region and the search of a primary cortex for pain. Neurophysiol Clin 42, 299-313. Garcia-Larrea, L., Perchet, C., Creac'h, C., Convers, P., Peyron, R., Laurent, B., Mauguiere, F., and Magnin, M. (2010). Operculo-insular pain (parasylvian pain): a distinct central pain syndrome. Brain 133, 2528-2539. Gauriau, C., and Bernard, J.F. (2004a). A comparative reappraisal of projections from the superficial laminae of the dorsal horn in the rat: the forebrain. J Comp Neurol 468, 24-56. Gauriau, C., and Bernard, J.F. (2004b). Posterior triangular thalamic neurons convey nociceptive messages to the secondary somatosensory and insular cortices in the rat. J Neurosci 24, 752-761. Hanamori, T., Kunitake, T., Kato, K., and Kannan, H. (1998a). Neurons in the posterior insular cortex are responsive to gustatory stimulation of the pharyngolarynx, baroreceptor and chemoreceptor stimulation, and tail pinch in rats. Brain Res 785, 97-106. Hanamori, T., Kunitake, T., Kato, K., and Kannan, H. (1998b). Responses of neurons in the insular cortex to gustatory, visceral, and nociceptive stimuli in rats. J Neurophysiol 79, 2535-2545. Hendrich, J., Van Minh, A.T., Heblich, F., Nieto-Rostro, M., Watschinger, K., Striessnig, J., Wratten, J., Davies, A., and Dolphin, A.C. (2008). Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin. Proc Natl Acad Sci U S A 105, 3628-3633. Isnard, J., Magnin, M., Jung, J., Mauguiere, F., and Garcia-Larrea, L. (2011). Does the insula tell our brain that we are in pain? Pain 152, 946-951. Iwata, M., LeBlanc, B.W., Kadasi, L.M., Zerah, M.L., Cosgrove, R.G., and Saab, C.Y. (2011). High-frequency stimulation in the ventral posterolateral thalamus reverses electrophysiologic changes and hyperalgesia in a rat model of peripheral neuropathic pain. Pain 152, 2505-2513. Jasmin, L., Burkey, A.R., Granato, A., and Ohara, P.T. (2004). Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468, 425-440. Kim, S.H., and Chung, J.M. (1992). An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50, 355-363. Kim, S.K., and Nabekura, J. (2011). Rapid synaptic remodeling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain. J Neurosci 31, 5477-5482. Leong, M.L., Gu, M., Speltz-Paiz, R., Stahura, E.I., Mottey, N., Steer, C.J., and Wessendorf, M. (2011). Neuronal loss in the rostral ventromedial medulla in a rat model of neuropathic pain. J Neurosci 31, 17028-17039. Li, C.Y., Song, Y.H., Higuera, E.S., and Luo, Z.D. (2004). Spinal dorsal horn calcium channel alpha2delta-1 subunit upregulation contributes to peripheral nerve injury-induced tactile allodynia. J Neurosci 24, 8494-8499. Mazzola, L., Faillenot, I., Barral, F.G., Mauguiere, F., and Peyron, R. (2012). Spatial segregation of somato-sensory and pain activations in the human operculo-insular cortex. Neuroimage 60, 409-418. Mazzola, L., Isnard, J., Peyron, R., Guenot, M., and Mauguiere, F. (2009). Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 146, 99-104. Metz, A.E., Yau, H.J., Centeno, M.V., Apkarian, A.V., and Martina, M. (2009). Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci U S A 106, 2423-2428. Nassar, M.A., Baker, M.D., Levato, A., Ingram, R., Mallucci, G., McMahon, S.B., and Wood, J.N. (2006). Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol Pain 2, 33. Ostrowsky, K., Magnin, M., Ryvlin, P., Isnard, J., Guenot, M., and Mauguiere, F. (2002). Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb Cortex 12, 376-385. Paxinos, G., and Watson, C. (2007). The rat brain in stereotaxic coordinates, 6th edn (Amsterdam ; Boston ;: Academic Press/Elsevier). Peltz, E., Seifert, F., DeCol, R., Dorfler, A., Schwab, S., and Maihofner, C. (2011). Functional connectivity of the human insular cortex during noxious and innocuous thermal stimulation. Neuroimage 54, 1324-1335. Pomares, F.B., Faillenot, I., Barral, F.G., and Peyron, R. (2013). The 'where' and the 'when' of the BOLD response to pain in the insular cortex. Discussion on amplitudes and latencies. Neuroimage 64, 466-475. Qu, C., King, T., Okun, A., Lai, J., Fields, H.L., and Porreca, F. (2011). Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain 152, 1641-1648. Quiton, R.L., Masri, R., Thompson, S.M., and Keller, A. (2010). Abnormal activity of primary somatosensory cortex in central pain syndrome. J Neurophysiol 104, 1717-1725. Richner, M., Bjerrum, O.J., Nykjaer, A., and Vaegter, C.B. (2011). The spared nerve injury (SNI) model of induced mechanical allodynia in mice. J Vis Exp. Rodgers, K.M., Benison, A.M., Klein, A., and Barth, D.S. (2008). Auditory, somatosensory, and multisensory insular cortex in the rat. Cereb Cortex 18, 2941-2951. Saab, C.Y. (2012). Pain-related changes in the brain: diagnostic and therapeutic potentials. Trends Neurosci 35, 629-637. Sandkuhler, J. (2009). Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89, 707-758. Saper, C.B. (1982). Convergence of autonomic and limbic connections in the insular cortex of the rat. J Comp Neurol 210, 163-173. Sato, F., Akhter, F., Haque, T., Kato, T., Takeda, R., Nagase, Y., Sessle, B.J., and Yoshida, A. (2013). Projections from the insular cortex to pain-receptive trigeminal caudal subnucleus (medullary dorsal horn) and other lower brainstem areas in rats. Neuroscience 233, 9-27. Seifert, F., and Maihofner, C. (2007). Representation of cold allodynia in the human brain--a functional MRI study. Neuroimage 35, 1168-1180. Shi, C., and Davis, M. (1999). Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies. J Neurosci 19, 420-430. Shi, C.J., and Cassell, M.D. (1998). Cortical, thalamic, and amygdaloid connections of the anterior and posterior insular cortices. J Comp Neurol 399, 440-468. Starr, C.J., Sawaki, L., Wittenberg, G.F., Burdette, J.H., Oshiro, Y., Quevedo, A.S., and Coghill, R.C. (2009). Roles of the insular cortex in the modulation of pain: insights from brain lesions. J Neurosci 29, 2684-2694. Suter, M.R., Papaloizos, M., Berde, C.B., Woolf, C.J., Gilliard, N., Spahn, D.R., and Decosterd, I. (2003). Development of neuropathic pain in the rat spared nerve injury model is not prevented by a peripheral nerve block. Anesthesiology 99, 1402-1408. Ultenius, C., Linderoth, B., Meyerson, B.A., and Wallin, J. (2006). Spinal NMDA receptor phosphorylation correlates with the presence of neuropathic signs following peripheral nerve injury in the rat. Neurosci Lett 399, 85-90. Xie, W., Strong, J.A., Meij, J.T., Zhang, J.M., and Yu, L. (2005). Neuropathic pain: early spontaneous afferent activity is the trigger. Pain 116, 243-256. Xing, H., Chen, M., Ling, J., Tan, W., and Gu, J.G. (2007). TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 27, 13680-13690. Xu, H., Wu, L.J., Wang, H., Zhang, X., Vadakkan, K.I., Kim, S.S., Steenland, H.W., and Zhuo, M. (2008). Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J Neurosci 28, 7445-7453. Zhang, X., and Giesler, G.J., Jr. (2005). Response characterstics of spinothalamic tract neurons that project to the posterior thalamus in rats. J Neurophysiol 93, 2552-2564. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/5861 | - |
| dc.description.abstract | 神經痛是臨床上難以根治的一種神經疾病。它會造成中樞神經系統神統神經
可塑性永久的變化。島腦皮質是大腦中可接受不同種類感覺訊息傳入的部位,許 多研究顯示後端島腦能接收體感覺訊息,尤其是疼痛相關訊息的處理。然而,後 端島腦對於神經痛的形成與維持的貢獻仍然不清楚。本實驗將後端島腦進行永久 性破壞,觀察破壞後對神經痛模式大鼠行為指標的影響。結果顯示,破壞後端島 腦可以使得神經痛造成的機械性觸感痛有緩慢少許的回覆;冷覺反應也在破壞後 端島腦後有短暫減緩的情形。神經痛之前先破壞後端島腦則造成機械性觸感痛發 展較輕微;自發性疼痛沒有明顯差別,而冷覺觸感痛有加速發展的現象。神經追 蹤劑的研究結果發現,後端島腦會投射至視丘的後端三角核,而此核區主要接受 來自於脊髓的痛覺訊息。本實驗發現到後端島腦可能參與了神經痛在機械性觸感 痛的長期維持。此外,不同的神經痛症狀可能由不同大腦核區處理。 | zh_TW |
| dc.description.abstract | Neuropathic pain is an intractable disease in daily life and clinical research. It can
result in long-term changes in central nervous system. Insular cortex is a brain region participated in processing of different sensory modalities. Evidences have also shown that posterior insular cortex may be related to somatosensory perception especially in nociception. However, the role for how PIC contributes to the initiation or maintenance of neuropathic pain is less understood. In the present study, permanent lesion by NMDA excitotoxicity in PIC was used to assess the response to pain. Results showed that after PIC lesion in neuropathic rats, the mechanical threshold recovered gradually. The spontaneous paw lifting showed no improve, and withdrawal response to cold were transiently diminished. PIC pre-lesion resulted in less decreased mechanical threshold, and transient decrement of spontaneous paw lifting. However, there were faster development of cold allodynia. Tracer study revealed that PIC had a strong connection to posterior triangular thalamic nucleus and periaqueductal gray. These data suggested the partial role of PIC to maintain mechanical allodynia in neuropathic pain. Moreover, spontaneous pain, mechanical allodynia and cold allodynia of neuropathic pain might be differentially processed in the forebrain. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-16T16:17:53Z (GMT). No. of bitstreams: 1 ntu-102-R00b41009-1.pdf: 3706556 bytes, checksum: 67fa999c18bec9ccb8d4fcef570d52cd (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 摘要....................................................1
Abstract...............................................2 Introduction...........................................3 Peripheral mechanisms of neuropathic pain...........3 Central sensitization...............................4 Posterior insular cortex and neuropathic pain........6 Neuronal connection of PIC...........................7 Appropriate animal model for investigating neuropathic pain...................................................9 Hypothesis..........................................10 Aim of this study..................................10 Materials and Methods................................11 Results .............................................18 Discussion...........................................24 References...........................................30 Table and Figures....................................40 | |
| dc.language.iso | en | |
| dc.subject | 坐骨神經分支選擇選擇結紮切斷 | zh_TW |
| dc.subject | 順向和逆向追蹤劑 | zh_TW |
| dc.subject | 機械性觸感痛 | zh_TW |
| dc.subject | 永久破壞 | zh_TW |
| dc.subject | 視丘後端三角核 | zh_TW |
| dc.subject | posterior thalamic nucleus | en |
| dc.subject | mechanical allodynia | en |
| dc.subject | spared nerve injury | en |
| dc.subject | triangular part | en |
| dc.subject | anterograde and retrograde tracer | en |
| dc.subject | permanent lesion | en |
| dc.title | 後端島腦皮層在大鼠神經痛模式中扮演之角色 | zh_TW |
| dc.title | The Role of Posterior Insular Cortex in Rat Model of Neuropathic Pain | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳建璋,閔明源,邱麗珠,謝松蒼 | |
| dc.subject.keyword | 坐骨神經分支選擇選擇結紮切斷,永久破壞,機械性觸感痛,順向和逆向追蹤劑,視丘後端三角核, | zh_TW |
| dc.subject.keyword | spared nerve injury,permanent lesion,mechanical allodynia,anterograde and retrograde tracer,posterior thalamic nucleus,triangular part, | en |
| dc.relation.page | 52 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf | 3.62 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
