請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58617
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張嘉升(Chia-Seng Chang) | |
dc.contributor.author | Chih-Hao Lin | en |
dc.contributor.author | 林志豪 | zh_TW |
dc.date.accessioned | 2021-06-16T08:22:23Z | - |
dc.date.available | 2014-03-09 | |
dc.date.copyright | 2014-03-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-01-27 | |
dc.identifier.citation | 1. Alessio E., Carbone A., Castelli G., Frappoetro V., Second-order moving average and scaling of stochastic time series, The European Physical Journal B, 27, 197, (2002).
2. Altman E.G., Kantz H., Recurrence time analysis, long-term correlations, and extreme events, Physical Review E, 71, 056106, (2005). 3. Arneodo A., Bacry E., Manneville S., and Muzy J.F., Analysis of Random Cascades Using Space-Scale Correlation Functions, Physical Review Letters, 80, 708, (1998a). 4. Arneodo A., Bacry E., and Muzy J.F., Random cascades on wavelet dyadic trees,Journal of Mathematical Physics, 39, 4142, (1998b). 5. Arneodo A., Muzy J.F. and Sornette D., “Direct” causal cascade in the stock market ,The European Physical Journal, 2, 277, (1998c). 6. Ashkenazy Y., Ivanov P. Ch., Havlin S., Peng C.K., Goldberger A.L., Stanley H.E., Magnitude and sign correlations in heartbeat fluctuations, Physical Review Letters, 86, 1900, (2001). 7. Bacry E., Delour J., Muzy J.F., Multifractal random walk, Physical Review E, 64 026103, (2001). 8. Bacry E., Delour J., Muzy J.F., Modelling financial time series using multifractal random walks, Physica A, 299, 84, (2001). 9. Bacry E., Duvernet L., Muzy J.F., Continuous-time skewed multifratal processes as a model for financial returns, Applied Probability Trust, 49, 482, (2012). 10. Bacry E., Kozhemyak A., Muzy J.F., Continuous cascade models for asset returns, Journal of Economic Dynamics and Control, 32, 156, (2008). 11. Barabasi A.L. and Stanley H.E., Fractal concepts in surface growth. Cambridge University Press, (1995). 12. Berg B.A., Locating global minima in optimization problems by random-cost approach, Nature, 361, 708-710, (1993). 13. Berntson G.G., Cacioppo J.T., Quigley K.S., Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications, Psycho- physiology, 30, 183, (1993). 14. Black F., Proceedings of the 1976 American Statistical Association, Business and Economic Statistics Section, (1976). 15. Blanchet-Scalliet C., El Karoui N., Jeanblanc M., Martellini L., Journal of Mathematical Economics, 44, 1100, (2008). 16. Bouchaud J.P., Matacz A., Potters M., Leverage Effect in Financial Markets: The Retarded Volatility Model, Physical Review Letters, 87, 228701, (2001). 17. Bouchaud J.P., Potters M., Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, Cambridge University Press, Cambridge, (2003). 18. Bunde A., Havlin S., Fractals in science, Springer Berlin, (1994). 19. Bunde A., Havlin S., Kantelhardt J.M., Penzel T., Peter J.H., Voigt K., Correlated and uncorrelated regions in heart-rate fluctuations during sleep, Physical Review Letters, 85, 3736, (2000). 20. Bunde E.K., Bunde A., Havlin S., Roman H.E., Goldreich Y., Schellnhuber H.J., Indication of a universal persistence law governing atmospheric variability, Physical Review Letters, 81, 729, (1998). 21. Carbone A., Castelli G., Stanley H.E., Analysis of clusters formed by the moving average of a long-range correlated time series, Physical Review E, 69, 026105, (2004a). 22. Carbone A., Castelli G., Stanley H.E., Time-dependent Hurst exponent in financial time series, Physica A, 344, 267, (2004b). 23. Calvet L.E. and Fisher A.J., Forecasting multifractal volatility, Journal of Econometrics, 105, 27, (2001). 24. Calvet L.E. and Fisher A.J., Multifractality in Asset Returns: Theory and Evidence, The Review of Economics and Statistics, 84(3), 381, (2002). 25. Calvet L.E. and Fisher A.J., Multifractal Volatility: Theory, Forecasting, and Pricing, Academic Press Advanced Finance, (2008). 26. Campbell J. and Viceira L., Strategic asset allocation-portfolio choice for long-term investors Clarendon Lectures in Economics, Oxford Univ. Press, Oxford (2002). 27. Carius S., Ingelman G., The log-normal distribution for cascade multiplicities in hadron collisions, Physical Letters B, 252, 647, (1990). 28. Chakraborti A., Toke I.M., Patriarca M. and Abergel F., Econophysics: empirical facts and agent-based models,. arXiv:0909.1974, (2009). 29. Chen W., Szeto K.Y., Mixed time scale strategy in portfolio management, International Review of Financial Analysis, 23 ,35, (2012). 30. Cizeau P., Liu Y., Meyer M., Peng C.K. and Stanley H.E., Volatility distribution in the S&P500 stock index, Physica A, 245, 441, (1997). 31. Chakraborti A., Toke I.M., Patriarca M. and Abergel F., Econophysics review: 1. Empirical facts, Quantitative Finance, 11, 991, (2011). 32. Cont R, Empirical properties of asset returns: stylized facts and statistical issues, Quantitative Finance, 1, 223, (2001). 33. Cont R., Volatility clustering in financial markets: empirical facts and agent-based models, Long Memory in Economics, Springer Press, (2007). 34. Daubechies I., Orthogonal bases of compactly supported wavelets, Communications on Pure and Applied Mathematicas, 41, 909, (1988). 35. Deb K., An introduction to genetic algorithms, Sadhana, 24, 293 (1999). 36. Delignieresa D., Ramdania S., Lemoinea L., Torrea K., Fortesb M., Ninot G., Fractal analyses for ‘short’ time series: A re-assessment of classical methods, Journal of Mathematical Psychology, 50, 525, (2006). 37. Ding Z., Granger C.W.J. and Engle R.F., A long memory property of stock market returns and a new model, Journal of Empirical Finance 1, 83, (1993). 38. Engle R.F., Autoregressive conditional herteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987, (1982). 39. Engle R.F., Patton A., What good is a volatility model?, Quantitative Finance, 1, 237, (2001). 40. Evans L.C., An introduction to Stochastic Differential Equations Version 1.2, (2006). 41. Fama E.F., The Behavior of Stock-Market Prices, Journal of Business, 38, 34, (1965). 42. Feder J., Fractals (Physics of Solids and Liquids), Plenum Press, (1988). 43. Fong A.L.Y. and Szeto K.Y., Rule Extraction in Short Memory Time Series using Genetic Algorithms, European Physical Journal B, 20, 569, (2001). 44. Froehlinghaus T. and Szeto K.Y., Time Series Prediction with Hierarchical Raidal Basis Function, Proceedings of the International Conference on Neural Information Processing, Hong Kong, 1996, Springer Verlag, ICONIP’96, Vol.2,799-802, (1996). 45. Fukunaga K., Introduction to Statistical Pattern Recognition, Academic Press, (1990). 46. Goupillaud P., Grossmann A., Morlet J., Cycle-octave and related transforms in seismic signal analysis, Geoexploration, 23, 85, (1984). 47. Gu G.F., Zhou W.X., Detrended fluctuation analysis for fractals and multifractals in higher dimensions, Physical Review E, 74, 061104, (2006). 48. Hakansson N.H., Multi-period mean-variance analysis: toward a general theory of portfolio choice, Journal of Finance, 26, 857, (1971). 49. Hausdorff J.M., Ashkenazy Y., Peng C.K., Ivanov P.Ch., Stanley H.E., Goldberger A.L., When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations, Physica A, 302, 138, (2001). 50. Heston S.L., A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, The Review of Financial Studies, 6, 327, (1993). 51. Holland J. H., Adaption in Natural and Artificial Systems, MIT Press, (1975). 52. Horasanl M. and Fidan N., Portfolio selection by using time varying covariance matrices, Journal of Economic and Social Research, 9(2), 1, (2007). 53. Hull J. and White A., The Pricing of Options on Assets with Stochastic Volatilities, The Journal of Finance, 42, 281, (1987). 54. Hunt G.A., Random Fourier transforms, Transactions of the American Mathematical Society, 71, 38, (1951). 55. Hurst H.E., Long-term storage capacity of reservoirs, Transactions of the American Mathematical Society of Civil Engineering, 116, 770, (1951). 56. Hurst H.E., Black R.P., Simaika Y.M., Long-term storage: an experimental study, Constable and Co., Ltd, London, (1965). 57. Ivanov P.Ch., Amaral L.A.N., Goldberger A.L., Havlin S., Rosenblum M.G., Struzik Z.R., Stanley H.E., Multifractality in human heartbeat dynamics, Nature, 399, 461, (1999). 58. Kantelhardt J. W., Fractal and Multifractal Time Series, arXiv:0804.0747v1, (2008) 59. Kantelhardt J.W., Roman H.E., Greiner M., Discrete wavelet approach to multifractality, Physica A, 220, 219, (1995). 60. Kantelhardt J.W., Zschiegner S.A., Bunde A., Havlin S., Bunde E.K., Stanley H.E., Multifractal detrended fluctuation analysis of non-stationary time series, Physica A, 316, 87, (2002). 61. Kirkpatrick S., Gelatt C.D. Jr., Vecchi M.P., Optimization by simulated annealing, Science, 220, 671, (1983). 62. Kiyono K., Struzik Z.R., Aoyagi N., Sakata S., Hayano J., Yamamoto Y., Critical scale-invariance in healthy human heart rate, Physical Review Letters, 93, 178103, (2004). 63. Kiyono K., Struzik Z.R., Aoyagi N., Togo F., Yamamoto Y., Phase Transition in a Healthy Human Heart Rate, Physical Review Letters. 95, 058101, (2005). 64. Langdon W.B., Genetic Programming + Data Structures = Automatic Programming, Kluwer Academic Publishers, (1998). 65. Li S. P., Physics Bimonthly 24 no. 2, 307, (2002). 66. Maccheroni F., Portfolio selection with monotone mean-variance preferences, Mathematical Finance, 19, 487, (2009). 67. Makikallio T.H., Huikuri H.V., Makikallio A., Sourander L.B., Mitrani R.D., Castellanos A., Myerburg R.J., Prediction of sudden cardiac death by fractal analysis of heart rate variability in elderly subjects, Journal of the American College of Cardiology, 37, 1395, (2001). 68. Mandelbrot B.B., Multifractals and 1/f noise: wild self-affinity in physics, Springer, Berlin, (1999). 69. Mandelbrot B.B., Fisher A. and Calvet L., A Multifractal Model of Asset Returns, Cowles Foundation Discussion Paper #1164, (1997). 70. Mandelbrot B.B., Ness J.W.V., Fractional Brownian motions, fractional noises and applications, SIAM Review, 10, 422, (1968). 71. Mandelbrot B.B., Wallis J.R., Some long-run properties of geophysical record, Water Resources Research, Wiley, (1969). 72. Mantegna R.N., Stanley H.E., Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, Cambridge, (2000). 73. Markowitz H., Portfolio selection, Journal of Finance, 7, 77 , (1952). 74. Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E., Equation of state calculation by fast computing machines, Journal of Chemical Physics, 21, 1087, (1953). 75. Micchche S., Bonanno G., Lillo F. and Mantegna R.N., Volatility in financial markets: stochastic models and empirical results, Physica A, 314, 756, (2002). 76. Mielniczuk J., Wojdyllo P., Estimation of Hurst exponent revisited, Computational Statistics & Data Analysis, 51, 4510, (2007). 77. Mordant N., Leveque E. and Pinton J.F., Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence, New Journal of Physics, 6, 116, (2004). 78. Muzy J.F., Delour J., Bacry E., Modelling fluctuations of financial time series: from cascade process to stochastic volatility model, European Physical Journal B, 17, 537, (2000). 79. Nieto F.J., Young T.B., Lind B.K., Shahar Eyal, Samet J.M., Redline S., D’Agostino R.B., Newman A.B., Lebowitz M.D., Pickering T.G., Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study, Sleep Heart Health Study, JAMA, 283,1829, (2000). 80. Parish J.M., Somers V.K., Obstructive sleep apnea and cardiovascular disease, Mayo Clinic Proceedings, 79, 1036 (2004). 81. Peng C.K., Buldyrev S.V., Goldberger A.L., Havlin S., Sciortino F., Simons M., Stanley H.E., Long-range correlations in nucleotide sequences, Nature, 356, 168, (1992). 82. Peng C.K., Buldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L., Mosaic organization of DNA nucleotides, Physical Review E, 49, 1685, (1994) 83. Peppard P.E., Young T., Palta M., Skatrud J., Prospective study of the association between sleep-disordered breathing and hypertension, The New England Journal of Medicine, 342, 1378, (2000). 84. Preis T., Kenett D.Y., Stanley H.E., Helbing D. and Ben-Jacob E., Quantifying the Behavior of Stock Correlations Under Market Stress, Science Reports 00752, (2012). 85. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipes in C, Cambridge Press 2nd, (1992). 86. Ramirez J.A., Rodriguez E., Echeverria J.C., Detrending fluctuation analysis based on moving average filtering, Physica A, 354, 199, (2005). 87. Rangarajan G., Ding M., Integrated approach to the assessment of long range correlation in time series data, Physical Review E, 61, 4991, (2000). 88. Reigneron P.A., Allez R. and Bouchaud J. P., Principal regression analysis and the index leverage effect, Physica A, 390, 3026 , (2011). 89. Saakian D. B., Martirosyan A., Hu C.K. and Struzik Z. R., Exact probability distribution function for multifractal random walk models of stocks, Europhysics Letters, 95, 28007, (2011). 90. Samuelson P., Proof That Properly Anticipated Prices Fluctuate Randomly, Industrial Management Review, 6, 41, (1965). 91. Schmitt F.G. and Seuront L., Multifractal random walk in copepod behavior, Physica A, 301, 375, (2001). 92. Schweizer M., Variance optimal hedging in discrete time, Mathematics of Operations Research, 20, 1, (1995). 93. Shiau Y.H., Sie J.H. and Li S.P., Detecting sleep apnea by volatility clustering of heart rate variability, International Journal of Cardiology, 168, 1638, (2013). 94. Sorriso-Valvo L., Carbone V., Veltri P., Consolini G., Bruno R., Intermittency in the solar wind turbulence through probability distribution functions of fluctuations, Geophysical Research Letters, 26, 1801, (1999). 95. Szeto K.Y., Chan K.O., Cheung K.H., Application of genetic algorithms in stock market prediction, Proceedings of the Fourth International Conference on Neural Networks in the Capital Markets: Progress in Neural Processing, Decision Technologies for Financial Engineering, Ed. A.S. Weigend, Y. Abu-Mostafa, and A.P.N. Refenes; World Scientific, NNCM-96, 95-103, (1997b). 96. Szeto K.Y., Cheung K.H., Multiple time series prediction using genetic algorithms optimizer, Proceedings of the International Symposium on Intelligent Data Engineering and Learning, IDEAL'98,Hong Kong, , 127-133, (1998). 97. Szeto K.Y. and Cheung K.H., Annealed genetic algorithm for multiple time series prediction, Proceedings of the World Multiconference on Systemic, Cybernetics and Informatics, Caracas, vol.3,390-396, ( 1997a). 98. Szeto K.Y., Fong L.Y., How adaptive agents in stock market perform in the presence of random news: a genetic algorithm approach, LNCS/LNAI, Vol. 1983, Ed. K. S. Leung et al. Spriger-Verlag, Heidelberg, 2000, IDEAL 2000, 505-510, (2000). 99. Szeto K.Y., Zhang J., Adaptive genetic Algorithm and quasi-parallel genetic algorithm: application to Knapsack problem, LSSC’05 Proceedings of the 5th International Conference on Large-Scale Scientific Computing, 189-196, (2006). 100. Taqqu M.S., Teverovsky V., Willinhrt W., Estimators for long-range dependence: An empirical study, Fractal, 3, 785, (1995). 101. Tom F., An introduction to ROC analysis, Pattern Recognition Letter, 27, 861, (2006). 102. Tseng J.J., Li S.P., Asset returns and volatility clustering in financial time series, Physica A, 390, 1300, (2011). 103. Tseng J.J., Li S.P., Quantifying volatility clustering in financial time series International Review of Financial Analysis, 23, 11, (2012). 104. Ugur O., An introduction to Computational Finance, Imperial College Press, (2008). 105. Young T., Peppard P, Palta M, Hla KM, Finn L, Morgan B, Skatrud J., Population-based study of sleep-disordered breathing as a risk factor for hypertension, Archives of Internal Medicine, 157, 1746, (1997). 106. Zemke S., Nonlinear index prediction, Physica A, 269, 177, (1999). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/58617 | - |
dc.description.abstract | 本篇論文主要是在研究複雜系統的隨機度分析及應用。首先我們會從機率理論、布朗運動和隨機過程出發,去探討一些基本的時間序列特性。接著我們會用提出方法去探討非穩態時間序列的特性。所謂的非穩態的時間序列是指其平均值和標準差是時間的函數,而不是常數。除此之外,我們也利用開發出的方法去分析不同種的時間序列,例如股票市場和心律變動性分析。利用一些股票市場的特性,我們提出了一種適合保守型投資者的投資策略,此策略可以避免投資者承受金融海嘯的損失並且其交易結果優於大多數的股票平均。在心律變動分析方面,我們所提出的方法可以精準地分辨出睡眠呼吸中止症的患者和一般民眾的心跳節奏的不同,因此可以在醫學上有很大的應用潛力。在本篇論文的最後,我們附上一些我們使用過的數值方法和程式碼,以方便讀者可以輕鬆地重複我們的一些研究成果。 | zh_TW |
dc.description.abstract | The main theme of this thesis is about the study of stochasticity in complex systems and its applications. First, we introduce the probability theory, Brownian motions, Ito process and multifractal random walk model, which are the basic models to describe the stochastic behavior of the time series. Then we develop methods to study the properties of the non-stationary time series, of which the mean and variance are changing with time, and quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. In addition, we make use of the properties we found in the time series of stock market to propose a trading strategy to avoid losing fortune in the bear market and the overall trading results beat the average performance of the stock markets. We apply our algorithms to study the heart rate variability(HRV) in cardiology system. Our results can be used to distinguish the difference between the HRV of the healthy people and the patients with sleep apnea symptom. We introduce some numerical methods in the appendices we used in studying the time series such as optimization methods and clustering phenomena. This thesis is organized as follows. In Chapter 1, we introduce the stochastic process and the multifractal random walk. In Chapter 2, we introduce our algorithms to measure the stochasticity in the non-stationary time series and its properties. In Chapter 3 and Chapter 4, we present the applications of our algorithms. A trading strategy which can be applied to any stock markets is introduced in Chapter 3. We define a parameter to distinguish the difference between the HRV of the healthy people and the patients with sleep apnea symptom in Chapter 4. Chapter 5 is the conclusion of our works in this thesis. In Chapter 6 (Appendix 1), we introduce a numerical method to solve optimization problems: the Genetic algorithm. In Chapter 7 (Appendix 2), we introduce the clustering effect which is the cause of the long term correlations and its applications. Chapter 8 (Appendix 3) is some miscellaneous contents which contain several useful functions and the Matlab source codes employed in the analysis and simulation in this thesis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T08:22:23Z (GMT). No. of bitstreams: 1 ntu-103-D99222013-1.pdf: 1871156 bytes, checksum: 89010524d8158a3042ab88367fcd2323 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 序言及致謝 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES x Chapter 1 Stochastic process 1 1.1 Introduction 1 1.2 Multifractal random walk (MRW) 9 Chapter 2 Algorithms to study stochasticity and multifractality in complex systems 19 2.1 Introduction 19 2.2 Method 24 2.3 Simulated time series test 29 2.4 Results 31 2.5 Conclusion 42 Chapter 3 Application: Adaptive trading for anti-correlated pairs of stocks 45 3.1 Introduction 45 3.2 First criterion on investment 47 3.3 Stock-pair selection: variance analysis for the long time scale 49 3.4 Short term trading criterion 51 3.5 Simulation result 53 3.6 Conclusion 58 Chapter 4 Application: The heart rate variability analysis of sleep apnea patients 59 4.1 Introduction 59 4.2 Methodology 60 4.3 Results and conclusion 62 Chapter 5 Conclusion 70 Chapter 6 Appendix (1) : Genetic algorithms 73 6.1 Introduction 73 6.2 Genetic algorithms 75 6.3 An example: Berg’s equation 78 6.4 Conclusion 81 Source code (Matlab) 82 Chapter 7 Appendix (2): Clustering effect and its applications 84 7.1 Introduction 84 7.2 Clustering behavior and autocorrelation function 88 7.3 Quantitative measurement of clustering behavior 92 7.4 The application of clustering index 97 Chapter 8 Appendix (3) Miscellany 102 8.1 Correlation function 102 8.2 Clustering index 104 8.3 Distribution function 106 8.4 Import and export data file 107 8.5 Moving window method 108 8.6 Kolmogorov-Smirnov test 109 8.7 Fluctuation analysis and Hurst exponent 110 8.8 Generating correlated random number 111 References 113 | |
dc.language.iso | en | |
dc.title | 量測複雜系統隨機度與多重碎形維度之演算法開發與應用 | zh_TW |
dc.title | An Empirical Algorithm to Measure Stochasticity and Multifractality in Complex Systems and Its Applications | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 李世炳(Sai-Ping Li) | |
dc.contributor.oralexamcommittee | 龐寧寧(Ning-Ning Pang),林致廷(Chih-Ting Lin),王孫崇(Sun-Chong Wang) | |
dc.subject.keyword | 隨機過程,時間序列,隨機度,交易策略,心律變動性分析, | zh_TW |
dc.subject.keyword | stochastic process,non-stantionary time series,Wiener process,conservative trading strategy,heart rate variability,sleep apnea, | en |
dc.relation.page | 122 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-01-27 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。